H&E image analysis pipeline for quantifying morphological features

Valeria Ariotta , Oskari Lehtonen , Shams Salloum , Giulia Micoli , Kari Lavikka , Ville Rantanen , Johanna Hynninen , Anni Virtanen , Sampsa Hautaniemi
{"title":"H&E image analysis pipeline for quantifying morphological features","authors":"Valeria Ariotta ,&nbsp;Oskari Lehtonen ,&nbsp;Shams Salloum ,&nbsp;Giulia Micoli ,&nbsp;Kari Lavikka ,&nbsp;Ville Rantanen ,&nbsp;Johanna Hynninen ,&nbsp;Anni Virtanen ,&nbsp;Sampsa Hautaniemi","doi":"10.1016/j.jpi.2023.100339","DOIUrl":null,"url":null,"abstract":"<div><p>Detecting cell types from histopathological images is essential for various digital pathology applications. However, large number of cells in whole-slide images (WSIs) necessitates automated analysis pipelines for efficient cell type detection. Herein, we present hematoxylin and eosin (H&amp;E) Image Processing pipeline (HEIP) for automatied analysis of scanned H&amp;E-stained slides. HEIP is a flexible and modular open-source software that performs preprocessing, instance segmentation, and nuclei feature extraction. To evaluate the performance of HEIP, we applied it to extract cell types from ovarian high-grade serous carcinoma (HGSC) patient WSIs. HEIP showed high precision in instance segmentation, particularly for neoplastic and epithelial cells. We also show that there is a significant correlation between genomic ploidy values and morphological features, such as major axis of the nucleus.</p></div>","PeriodicalId":37769,"journal":{"name":"Journal of Pathology Informatics","volume":"14 ","pages":"Article 100339"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pathology Informatics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2153353923001530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Detecting cell types from histopathological images is essential for various digital pathology applications. However, large number of cells in whole-slide images (WSIs) necessitates automated analysis pipelines for efficient cell type detection. Herein, we present hematoxylin and eosin (H&E) Image Processing pipeline (HEIP) for automatied analysis of scanned H&E-stained slides. HEIP is a flexible and modular open-source software that performs preprocessing, instance segmentation, and nuclei feature extraction. To evaluate the performance of HEIP, we applied it to extract cell types from ovarian high-grade serous carcinoma (HGSC) patient WSIs. HEIP showed high precision in instance segmentation, particularly for neoplastic and epithelial cells. We also show that there is a significant correlation between genomic ploidy values and morphological features, such as major axis of the nucleus.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于形态学特征量化的H&E图像分析流水线
从组织病理学图像中检测细胞类型对于各种数字病理学应用是必不可少的。然而,全片图像(wsi)中大量的细胞需要自动化的分析管道来进行有效的细胞类型检测。在此,我们提出苏木精和伊红(H&E)图像处理管道(HEIP),用于自动分析扫描的H&E染色玻片。HEIP是一个灵活的模块化开源软件,可以执行预处理、实例分割和核特征提取。为了评估HEIP的性能,我们将其应用于提取卵巢高级别浆液性癌(HGSC)患者WSIs的细胞类型。HEIP在实例分割中显示出较高的精度,特别是对肿瘤细胞和上皮细胞。我们还表明,基因组倍性值与细胞核长轴等形态特征之间存在显著的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Pathology Informatics
Journal of Pathology Informatics Medicine-Pathology and Forensic Medicine
CiteScore
3.70
自引率
0.00%
发文量
2
审稿时长
18 weeks
期刊介绍: The Journal of Pathology Informatics (JPI) is an open access peer-reviewed journal dedicated to the advancement of pathology informatics. This is the official journal of the Association for Pathology Informatics (API). The journal aims to publish broadly about pathology informatics and freely disseminate all articles worldwide. This journal is of interest to pathologists, informaticians, academics, researchers, health IT specialists, information officers, IT staff, vendors, and anyone with an interest in informatics. We encourage submissions from anyone with an interest in the field of pathology informatics. We publish all types of papers related to pathology informatics including original research articles, technical notes, reviews, viewpoints, commentaries, editorials, symposia, meeting abstracts, book reviews, and correspondence to the editors. All submissions are subject to rigorous peer review by the well-regarded editorial board and by expert referees in appropriate specialties.
期刊最新文献
Improving the generalizability of white blood cell classification with few-shot domain adaptation Pathology Informatics Summit 2024 Abstracts Ann Arbor Marriott at Eagle Crest Resort May 20-23, 2024 Ann Arbor, Michigan Deep learning-based classification of breast cancer molecular subtypes from H&E whole-slide images. Enhancing human phenotype ontology term extraction through synthetic case reports and embedding-based retrieval: A novel approach for improved biomedical data annotation. Prioritizing cases from a multi-institutional cohort for a dataset of pathologist annotations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1