New precision electroforming process for the simultaneous improvement of thickness uniformity and microstructure homogeneity of wafer-scale nanotwinned copper arrays

IF 14 1区 工程技术 Q1 ENGINEERING, MANUFACTURING International Journal of Machine Tools & Manufacture Pub Date : 2023-04-01 DOI:10.1016/j.ijmachtools.2023.104006
Xiaofei Zhan, Chunjian Shen, Zengwei Zhu, Di Zhu
{"title":"New precision electroforming process for the simultaneous improvement of thickness uniformity and microstructure homogeneity of wafer-scale nanotwinned copper arrays","authors":"Xiaofei Zhan,&nbsp;Chunjian Shen,&nbsp;Zengwei Zhu,&nbsp;Di Zhu","doi":"10.1016/j.ijmachtools.2023.104006","DOIUrl":null,"url":null,"abstract":"<div><p>Nanotwinned (nt) Cu has received much attention because of its superior mechanical and electrical properties, but only a few production processes can yield nt-Cu parts with uniform thickness and a homogeneous microstructure on the wafer scale. To solve this problem, a new precision electroforming process is proposed that combines auxiliary cathodes with pulse reverse current (PRC) electroforming, which provides a synergistic effect to increase the homogeneity of the thickness and a nanoscale twin structure. As a practical example of the proposed process, 4-inch nt-Cu lamina arrays were fabricated and numerically modeled to probe into the synergistic mechanisms. The intrinsic correlations among the array element spacing, current waveform, and main forms of thickness nonuniformity were determined. In addition, the effects of the processing parameters on the microstructural evolution and microhardness of the nt-Cu arrays were analyzed. The results indicated that such a significant improvement in thickness uniformity and microstructure homogeneity were due to the auxiliary-cathode/PRC combination, which enables maximization of the PRC leveling efficiency by inducing a uniform current distribution; this effectively ensures that the microstructures are uniform across all laminae on the wafer scale. Additionally, thick nt-Cu deposited on the current-crowding regions was preferentially stripped during the application of reverse current. This alleviates the adverse effects of the current redistribution resulting from the auxiliary cathode on the thickness uniformity of the laminae and offers additional possibilities for homogeneous growth of nt-Cu. The new precision electroforming process has significant potential to produce wafer-scale components with uniform thickness and specific microstructures.</p></div>","PeriodicalId":14011,"journal":{"name":"International Journal of Machine Tools & Manufacture","volume":"187 ","pages":"Article 104006"},"PeriodicalIF":14.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Machine Tools & Manufacture","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890695523000147","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 1

Abstract

Nanotwinned (nt) Cu has received much attention because of its superior mechanical and electrical properties, but only a few production processes can yield nt-Cu parts with uniform thickness and a homogeneous microstructure on the wafer scale. To solve this problem, a new precision electroforming process is proposed that combines auxiliary cathodes with pulse reverse current (PRC) electroforming, which provides a synergistic effect to increase the homogeneity of the thickness and a nanoscale twin structure. As a practical example of the proposed process, 4-inch nt-Cu lamina arrays were fabricated and numerically modeled to probe into the synergistic mechanisms. The intrinsic correlations among the array element spacing, current waveform, and main forms of thickness nonuniformity were determined. In addition, the effects of the processing parameters on the microstructural evolution and microhardness of the nt-Cu arrays were analyzed. The results indicated that such a significant improvement in thickness uniformity and microstructure homogeneity were due to the auxiliary-cathode/PRC combination, which enables maximization of the PRC leveling efficiency by inducing a uniform current distribution; this effectively ensures that the microstructures are uniform across all laminae on the wafer scale. Additionally, thick nt-Cu deposited on the current-crowding regions was preferentially stripped during the application of reverse current. This alleviates the adverse effects of the current redistribution resulting from the auxiliary cathode on the thickness uniformity of the laminae and offers additional possibilities for homogeneous growth of nt-Cu. The new precision electroforming process has significant potential to produce wafer-scale components with uniform thickness and specific microstructures.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新的精密电铸工艺,可同时改善晶圆级纳米孪晶铜阵列的厚度均匀性和微观结构均匀性
纳米孪晶铜因其优异的力学和电学性能而受到广泛关注,但目前只有少数几种生产工艺能够在晶圆尺度上生产出厚度均匀、微观结构均匀的纳米孪晶铜。为了解决这一问题,提出了一种新的精密电铸工艺,将辅助阴极与脉冲电流(PRC)电铸相结合,在提高厚度均匀性和纳米孪晶结构方面发挥协同作用。作为该工艺的一个实际例子,制作了4英寸的纳米铜层阵列,并对其进行了数值模拟,以探讨协同机理。确定了阵列元件间距、电流波形和厚度非均匀性的主要形式之间的内在相关性。此外,还分析了工艺参数对纳米铜阵列显微组织演变和显微硬度的影响。研究结果表明,辅助阴极/PRC组合可显著改善厚度均匀性和微观结构均匀性,通过诱导均匀的电流分布使PRC流平效率最大化;这有效地确保了晶圆尺度上所有层的微结构是均匀的。此外,在反向电流作用下,沉积在电流拥挤区厚的nt-Cu被优先剥离。这减轻了由辅助阴极引起的电流重新分布对层板厚度均匀性的不利影响,并为nt-Cu的均匀生长提供了额外的可能性。这种新的精密电铸工艺在生产厚度均匀、微结构特殊的晶圆级元件方面具有巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
25.70
自引率
10.00%
发文量
66
审稿时长
18 days
期刊介绍: The International Journal of Machine Tools and Manufacture is dedicated to advancing scientific comprehension of the fundamental mechanics involved in processes and machines utilized in the manufacturing of engineering components. While the primary focus is on metals, the journal also explores applications in composites, ceramics, and other structural or functional materials. The coverage includes a diverse range of topics: - Essential mechanics of processes involving material removal, accretion, and deformation, encompassing solid, semi-solid, or particulate forms. - Significant scientific advancements in existing or new processes and machines. - In-depth characterization of workpiece materials (structure/surfaces) through advanced techniques (e.g., SEM, EDS, TEM, EBSD, AES, Raman spectroscopy) to unveil new phenomenological aspects governing manufacturing processes. - Tool design, utilization, and comprehensive studies of failure mechanisms. - Innovative concepts of machine tools, fixtures, and tool holders supported by modeling and demonstrations relevant to manufacturing processes within the journal's scope. - Novel scientific contributions exploring interactions between the machine tool, control system, software design, and processes. - Studies elucidating specific mechanisms governing niche processes (e.g., ultra-high precision, nano/atomic level manufacturing with either mechanical or non-mechanical "tools"). - Innovative approaches, underpinned by thorough scientific analysis, addressing emerging or breakthrough processes (e.g., bio-inspired manufacturing) and/or applications (e.g., ultra-high precision optics).
期刊最新文献
Editorial Board Combining in situ synchrotron X-ray imaging and multiphysics simulation to reveal pore formation dynamics in laser welding of copper A distinctive material removal mechanism in the diamond grinding of (0001)-oriented single crystal gallium nitride and its implications in substrate manufacturing of brittle materials Strengthening flat-die friction self-pierce riveting joints via manipulating stir zone geometry by tailored rivet structures A novel method of induction electrode through-mask electrochemical micromachining
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1