Yixin Zhang , Catherine Ridings , Alexander Semenov
{"title":"What to post? Understanding engagement cultivation in microblogging with big data-driven theory building","authors":"Yixin Zhang , Catherine Ridings , Alexander Semenov","doi":"10.1016/j.ijinfomgt.2022.102509","DOIUrl":null,"url":null,"abstract":"<div><p>This paper examines how alternative food networks (AFNs) cultivate engagement on a social media platform. Using the method proposed in Kar and Dwivedi (2020) and Berente et al. (2019), we contribute to theory through combining exploratory text analysis with model testing. Using the theoretical lens of relationship cultivation and social media engagement, we collected 55,358 original Weibo posts by 90 farms and other AFN participants in China and used Latent Dirichlet Allocation (LDA) modeling for topic analysis. We then used the literature to map the topics with constructs and developed a theoretical model. To validate the theoretical model, a panel dataset was constructed on Weibo account and year level, with Chinese city-level yearly economic data included as control variables. A fixed effects panel data regression analysis was performed. The empirical results revealed that posts centered on openness/disclosure, sharing of tasks, and knowledge sharing result in positive levels of social media engagement. Posting about irrelevant information and advertising that uses repetitive wording in multiple posts had negative effects on engagement. Our findings suggest that cultivating engagement requires different relationship strategies, and social media platforms should be leveraged according to the context and the purpose of the social cause. Our research is also among the early studies that use both big data analysis of large quantities of textual data and model validation for theoretical insights.</p></div>","PeriodicalId":48422,"journal":{"name":"International Journal of Information Management","volume":"71 ","pages":"Article 102509"},"PeriodicalIF":20.1000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Management","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0268401222000408","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 4
Abstract
This paper examines how alternative food networks (AFNs) cultivate engagement on a social media platform. Using the method proposed in Kar and Dwivedi (2020) and Berente et al. (2019), we contribute to theory through combining exploratory text analysis with model testing. Using the theoretical lens of relationship cultivation and social media engagement, we collected 55,358 original Weibo posts by 90 farms and other AFN participants in China and used Latent Dirichlet Allocation (LDA) modeling for topic analysis. We then used the literature to map the topics with constructs and developed a theoretical model. To validate the theoretical model, a panel dataset was constructed on Weibo account and year level, with Chinese city-level yearly economic data included as control variables. A fixed effects panel data regression analysis was performed. The empirical results revealed that posts centered on openness/disclosure, sharing of tasks, and knowledge sharing result in positive levels of social media engagement. Posting about irrelevant information and advertising that uses repetitive wording in multiple posts had negative effects on engagement. Our findings suggest that cultivating engagement requires different relationship strategies, and social media platforms should be leveraged according to the context and the purpose of the social cause. Our research is also among the early studies that use both big data analysis of large quantities of textual data and model validation for theoretical insights.
期刊介绍:
The International Journal of Information Management (IJIM) is a distinguished, international, and peer-reviewed journal dedicated to providing its readers with top-notch analysis and discussions within the evolving field of information management. Key features of the journal include:
Comprehensive Coverage:
IJIM keeps readers informed with major papers, reports, and reviews.
Topical Relevance:
The journal remains current and relevant through Viewpoint articles and regular features like Research Notes, Case Studies, and a Reviews section, ensuring readers are updated on contemporary issues.
Focus on Quality:
IJIM prioritizes high-quality papers that address contemporary issues in information management.