{"title":"Attack-Defense game analysis of critical infrastructure network based on Cournot model with fixed operating nodes","authors":"Shuliang Wang, Jingya Sun, Jianhua Zhang, Qiqi Dong, Xifeng Gu, Chen Chen","doi":"10.1016/j.ijcip.2022.100583","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, some game models were proposed to protect critical infrastructure networks. But they mainly focused on the protection of key nodes, and there are rarely models to consider the fixed-point use of resources. Hence, in this paper, we propose a non-zero-sum simultaneous game model based on the Cournot model. Meanwhile, we presented a novel method of critical node centrality identification based on the Technique for Order Preference by Similarity to Ideal Solution<span> (TOPSIS). Simulating the game analysis on scale-free networks, small-world networks and random networks, it is found that the fixed operating nodes and the network topology<span> are key factors in payoffs considering the constraints of resources. Besides, robustness analysis of networks on various sensitivity parameters is given and some effective optimal strategies are acquired to provide decision support for policy-makers.</span></span></p></div>","PeriodicalId":49057,"journal":{"name":"International Journal of Critical Infrastructure Protection","volume":"40 ","pages":"Article 100583"},"PeriodicalIF":4.1000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Critical Infrastructure Protection","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874548222000671","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 2
Abstract
In recent years, some game models were proposed to protect critical infrastructure networks. But they mainly focused on the protection of key nodes, and there are rarely models to consider the fixed-point use of resources. Hence, in this paper, we propose a non-zero-sum simultaneous game model based on the Cournot model. Meanwhile, we presented a novel method of critical node centrality identification based on the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). Simulating the game analysis on scale-free networks, small-world networks and random networks, it is found that the fixed operating nodes and the network topology are key factors in payoffs considering the constraints of resources. Besides, robustness analysis of networks on various sensitivity parameters is given and some effective optimal strategies are acquired to provide decision support for policy-makers.
期刊介绍:
The International Journal of Critical Infrastructure Protection (IJCIP) was launched in 2008, with the primary aim of publishing scholarly papers of the highest quality in all areas of critical infrastructure protection. Of particular interest are articles that weave science, technology, law and policy to craft sophisticated yet practical solutions for securing assets in the various critical infrastructure sectors. These critical infrastructure sectors include: information technology, telecommunications, energy, banking and finance, transportation systems, chemicals, critical manufacturing, agriculture and food, defense industrial base, public health and health care, national monuments and icons, drinking water and water treatment systems, commercial facilities, dams, emergency services, nuclear reactors, materials and waste, postal and shipping, and government facilities. Protecting and ensuring the continuity of operation of critical infrastructure assets are vital to national security, public health and safety, economic vitality, and societal wellbeing.
The scope of the journal includes, but is not limited to:
1. Analysis of security challenges that are unique or common to the various infrastructure sectors.
2. Identification of core security principles and techniques that can be applied to critical infrastructure protection.
3. Elucidation of the dependencies and interdependencies existing between infrastructure sectors and techniques for mitigating the devastating effects of cascading failures.
4. Creation of sophisticated, yet practical, solutions, for critical infrastructure protection that involve mathematical, scientific and engineering techniques, economic and social science methods, and/or legal and public policy constructs.