{"title":"A hybrid deep learning model for discrimination of physical disturbance and cyber-attack detection in smart grid","authors":"Kübra Bitirgen , Ümmühan Başaran Filik","doi":"10.1016/j.ijcip.2022.100582","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>A smart grid (SG) consists of an interconnection of an electrical grid, communication, and information networks. The rapid developments of SG technologies<span> have resulted in complex cyber–physical systems. Due to these complexities, the attack surfaces of SGs broaden, and their vulnerabilities to cyber–physical threats increase. SG security systems focus on the protection of significant units and sub-systems of communication and power networks from </span></span>malicious threats<span><span><span> and external attacks. False data injection attack (FDIA) is known as the most severe threat to </span>SG systems. In this paper, a method of optimizing convolutional </span>neural networks — long short-term memory (CNN-LSTM) with </span></span>particle swarm optimization<span> (PSO) to detect FDIA in the SG system is proposed. This model uses phasor measurement unit<span> (PMU) measurements to detect an abnormal measurement value and determine the type of this anomaly. The complex hyperparameter space of the CNN-LSTM is optimized by the PSO. A detailed numerical comparison is made using the state-of-the-art deep learning (DL) architectures like LSTM, PSO-LSTM, and CNN-LSTM models to verify the accuracy and effectiveness of the proposed model. The results show that the model outperforms other DL models. In addition, the model has a high accuracy rate that provides decision support for the stable and safe operation of SG systems. In this respect, the proposed detection model is a candidate for building a more robust and powerful detection and protection mechanism.</span></span></p></div>","PeriodicalId":49057,"journal":{"name":"International Journal of Critical Infrastructure Protection","volume":"40 ","pages":"Article 100582"},"PeriodicalIF":4.1000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Critical Infrastructure Protection","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S187454822200066X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 15
Abstract
A smart grid (SG) consists of an interconnection of an electrical grid, communication, and information networks. The rapid developments of SG technologies have resulted in complex cyber–physical systems. Due to these complexities, the attack surfaces of SGs broaden, and their vulnerabilities to cyber–physical threats increase. SG security systems focus on the protection of significant units and sub-systems of communication and power networks from malicious threats and external attacks. False data injection attack (FDIA) is known as the most severe threat to SG systems. In this paper, a method of optimizing convolutional neural networks — long short-term memory (CNN-LSTM) with particle swarm optimization (PSO) to detect FDIA in the SG system is proposed. This model uses phasor measurement unit (PMU) measurements to detect an abnormal measurement value and determine the type of this anomaly. The complex hyperparameter space of the CNN-LSTM is optimized by the PSO. A detailed numerical comparison is made using the state-of-the-art deep learning (DL) architectures like LSTM, PSO-LSTM, and CNN-LSTM models to verify the accuracy and effectiveness of the proposed model. The results show that the model outperforms other DL models. In addition, the model has a high accuracy rate that provides decision support for the stable and safe operation of SG systems. In this respect, the proposed detection model is a candidate for building a more robust and powerful detection and protection mechanism.
期刊介绍:
The International Journal of Critical Infrastructure Protection (IJCIP) was launched in 2008, with the primary aim of publishing scholarly papers of the highest quality in all areas of critical infrastructure protection. Of particular interest are articles that weave science, technology, law and policy to craft sophisticated yet practical solutions for securing assets in the various critical infrastructure sectors. These critical infrastructure sectors include: information technology, telecommunications, energy, banking and finance, transportation systems, chemicals, critical manufacturing, agriculture and food, defense industrial base, public health and health care, national monuments and icons, drinking water and water treatment systems, commercial facilities, dams, emergency services, nuclear reactors, materials and waste, postal and shipping, and government facilities. Protecting and ensuring the continuity of operation of critical infrastructure assets are vital to national security, public health and safety, economic vitality, and societal wellbeing.
The scope of the journal includes, but is not limited to:
1. Analysis of security challenges that are unique or common to the various infrastructure sectors.
2. Identification of core security principles and techniques that can be applied to critical infrastructure protection.
3. Elucidation of the dependencies and interdependencies existing between infrastructure sectors and techniques for mitigating the devastating effects of cascading failures.
4. Creation of sophisticated, yet practical, solutions, for critical infrastructure protection that involve mathematical, scientific and engineering techniques, economic and social science methods, and/or legal and public policy constructs.