Sancan Han , Qingqiang Zhao , Qing Hou , Yuanpeng Ding , Jiale Quan , Yixin Zhang , Fangyu Wu , Yifei Lu , Hehua Zhang , Huijun Li , Ding Wang , Enming Song
{"title":"Flexible, active P-typed copper(I) thiocyanate (p-CuSCN) films as self-powered photodetectors for large-scale optoelectronic systems","authors":"Sancan Han , Qingqiang Zhao , Qing Hou , Yuanpeng Ding , Jiale Quan , Yixin Zhang , Fangyu Wu , Yifei Lu , Hehua Zhang , Huijun Li , Ding Wang , Enming Song","doi":"10.1016/j.mtelec.2023.100048","DOIUrl":null,"url":null,"abstract":"<div><p>P-type copper(I) thiocyanate (p-CuSCN) semiconductor materials have attracted a great deal of attention in the application for microsystems and optoelectronic engineering. Major challenge is in the development of advanced fabrication/growth techniques and resultant high-efficiency devices. Herein, <em>in situ</em> grown p-CuSCN film with different morphology are successfully achieved on flexible Cu foil by the simple solid-liquid interface reaction, which displays excellent UV photoresponse due to effective charge transport, thereby contributing to the large-area fabrication technique and the high-performance operation. The self-powered, highly sensitive and flexible NGQDs/CuSCN heterojunction device shows the ultrahigh photoresponsivity of 1.6 A/W and detectivity of 0.8 × 10<sup>12</sup> Jones at 3 V bias under 360 nm illumination, and the ultrafast photoresponse speed (T<sub>r</sub>= 10 µs, T<sub>d</sub>=0.6 ms), with relatively stable performance under bending cycles. The results provides an easy-processing and promising route to fabricate large-area p-CuSCN with remarkable optoelectronic performance, which opens up a new avenue on more novel works for the material design in practical photodetection.</p></div>","PeriodicalId":100893,"journal":{"name":"Materials Today Electronics","volume":"5 ","pages":"Article 100048"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Electronics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772949423000244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
P-type copper(I) thiocyanate (p-CuSCN) semiconductor materials have attracted a great deal of attention in the application for microsystems and optoelectronic engineering. Major challenge is in the development of advanced fabrication/growth techniques and resultant high-efficiency devices. Herein, in situ grown p-CuSCN film with different morphology are successfully achieved on flexible Cu foil by the simple solid-liquid interface reaction, which displays excellent UV photoresponse due to effective charge transport, thereby contributing to the large-area fabrication technique and the high-performance operation. The self-powered, highly sensitive and flexible NGQDs/CuSCN heterojunction device shows the ultrahigh photoresponsivity of 1.6 A/W and detectivity of 0.8 × 1012 Jones at 3 V bias under 360 nm illumination, and the ultrafast photoresponse speed (Tr= 10 µs, Td=0.6 ms), with relatively stable performance under bending cycles. The results provides an easy-processing and promising route to fabricate large-area p-CuSCN with remarkable optoelectronic performance, which opens up a new avenue on more novel works for the material design in practical photodetection.