{"title":"A flexible sparse matrix data format and parallel algorithms for the assembly of finite element matrices on shared memory systems","authors":"Adam Sky , César Polindara , Ingo Muench , Carolin Birk","doi":"10.1016/j.parco.2023.103039","DOIUrl":null,"url":null,"abstract":"<div><p><span>Finite element methods<span><span> require the composition of the global stiffness matrix from local finite element contributions. The composition process combines the computation of </span>element stiffness matrices<span> and their assembly into the global stiffness matrix, which is commonly sparse. In this paper we focus on the assembly process of the global stiffness matrix and explore different algorithms and their efficiency on shared memory systems using C</span></span></span><span>++</span><span>. A key aspect of our investigation is the use of atomic synchronization primitives for the derivation of data-race free algorithms and data structures. Furthermore, we propose a new flexible storage format for sparse matrices and compare its performance with the compressed row storage format using abstract benchmarks based on common characteristics of finite element problems.</span></p></div>","PeriodicalId":54642,"journal":{"name":"Parallel Computing","volume":"117 ","pages":"Article 103039"},"PeriodicalIF":2.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167819123000455","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Finite element methods require the composition of the global stiffness matrix from local finite element contributions. The composition process combines the computation of element stiffness matrices and their assembly into the global stiffness matrix, which is commonly sparse. In this paper we focus on the assembly process of the global stiffness matrix and explore different algorithms and their efficiency on shared memory systems using C++. A key aspect of our investigation is the use of atomic synchronization primitives for the derivation of data-race free algorithms and data structures. Furthermore, we propose a new flexible storage format for sparse matrices and compare its performance with the compressed row storage format using abstract benchmarks based on common characteristics of finite element problems.
期刊介绍:
Parallel Computing is an international journal presenting the practical use of parallel computer systems, including high performance architecture, system software, programming systems and tools, and applications. Within this context the journal covers all aspects of high-end parallel computing from single homogeneous or heterogenous computing nodes to large-scale multi-node systems.
Parallel Computing features original research work and review articles as well as novel or illustrative accounts of application experience with (and techniques for) the use of parallel computers. We also welcome studies reproducing prior publications that either confirm or disprove prior published results.
Particular technical areas of interest include, but are not limited to:
-System software for parallel computer systems including programming languages (new languages as well as compilation techniques), operating systems (including middleware), and resource management (scheduling and load-balancing).
-Enabling software including debuggers, performance tools, and system and numeric libraries.
-General hardware (architecture) concepts, new technologies enabling the realization of such new concepts, and details of commercially available systems
-Software engineering and productivity as it relates to parallel computing
-Applications (including scientific computing, deep learning, machine learning) or tool case studies demonstrating novel ways to achieve parallelism
-Performance measurement results on state-of-the-art systems
-Approaches to effectively utilize large-scale parallel computing including new algorithms or algorithm analysis with demonstrated relevance to real applications using existing or next generation parallel computer architectures.
-Parallel I/O systems both hardware and software
-Networking technology for support of high-speed computing demonstrating the impact of high-speed computation on parallel applications