Constructing heterointerface of Bi/Bi2S3 with built-in electric field realizes superior sodium-ion storage capability

IF 42.9 Q1 ELECTROCHEMISTRY eScience Pub Date : 2023-08-01 DOI:10.1016/j.esci.2023.100138
Rong Liu , Lai Yu , Xiaoyue He , Huanhuan Liu , Xinyi Ma , Zongzhi Tao , Guanglin Wan , Nazir Ahmad , Bo Peng , Liang Shi , Genqiang Zhang
{"title":"Constructing heterointerface of Bi/Bi2S3 with built-in electric field realizes superior sodium-ion storage capability","authors":"Rong Liu ,&nbsp;Lai Yu ,&nbsp;Xiaoyue He ,&nbsp;Huanhuan Liu ,&nbsp;Xinyi Ma ,&nbsp;Zongzhi Tao ,&nbsp;Guanglin Wan ,&nbsp;Nazir Ahmad ,&nbsp;Bo Peng ,&nbsp;Liang Shi ,&nbsp;Genqiang Zhang","doi":"10.1016/j.esci.2023.100138","DOIUrl":null,"url":null,"abstract":"<div><p>Bismuth sulfide (Bi<sub>2</sub>S<sub>3</sub>) is a dominant anode material for sodium-ion batteries due to its high theoretical capacity. However, extreme volume fluctuations as well as low electrical conductivity and reaction kinetics still limit its practical applications. Herein, we construct an abundant heterointerface of Bi/Bi<sub>2</sub>S<sub>3</sub> by engineering the structure of Bi nanoparticles embedded on Bi<sub>2</sub>S<sub>3</sub> nanorods (denoted as Bi–Bi<sub>2</sub>S<sub>3</sub> NRs) to effectively solve the abovementioned obstacles. Theoretical and systematic characterization results reveal that the constructed heterointerface of Bi/Bi<sub>2</sub>S<sub>3</sub> has a built-in electric field, significantly boosts the electrical conductivity, enhances the Na<sup>+</sup> diffusion kinetics, and buffers the volume variation. With this modification, it can deliver long cycling life, with an ultra-high capacity of 500 mAh g<sup>−1</sup> over 500 cycles at 1 ​A ​g<sup>−1</sup>, and outstanding rate capability, with a capacity of 456 mAh g<sup>−1</sup> even at 15 ​A ​g<sup>−1</sup>. Moreover, a full cell can achieve a high energy density of 180 ​Wh kg<sup>−1</sup> at a power density of 40 ​W ​kg<sup>−1</sup>. Our research opens up a fresh path for improving the dynamics and structural stability of metal sulfide-based electrode materials for SIBs.</p></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"3 4","pages":"Article 100138"},"PeriodicalIF":42.9000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eScience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667141723000630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 4

Abstract

Bismuth sulfide (Bi2S3) is a dominant anode material for sodium-ion batteries due to its high theoretical capacity. However, extreme volume fluctuations as well as low electrical conductivity and reaction kinetics still limit its practical applications. Herein, we construct an abundant heterointerface of Bi/Bi2S3 by engineering the structure of Bi nanoparticles embedded on Bi2S3 nanorods (denoted as Bi–Bi2S3 NRs) to effectively solve the abovementioned obstacles. Theoretical and systematic characterization results reveal that the constructed heterointerface of Bi/Bi2S3 has a built-in electric field, significantly boosts the electrical conductivity, enhances the Na+ diffusion kinetics, and buffers the volume variation. With this modification, it can deliver long cycling life, with an ultra-high capacity of 500 mAh g−1 over 500 cycles at 1 ​A ​g−1, and outstanding rate capability, with a capacity of 456 mAh g−1 even at 15 ​A ​g−1. Moreover, a full cell can achieve a high energy density of 180 ​Wh kg−1 at a power density of 40 ​W ​kg−1. Our research opens up a fresh path for improving the dynamics and structural stability of metal sulfide-based electrode materials for SIBs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
构建内置电场的Bi/Bi2S3异质界面实现了优异的钠离子存储能力
硫化铋(Bi2S3)具有较高的理论容量,是钠离子电池的主要负极材料。然而,极端的体积波动以及低电导率和反应动力学仍然限制了它的实际应用。本文通过工程设计嵌入Bi2S3纳米棒上的Bi纳米颗粒(表示为Bi - Bi2S3 NRs)结构,构建了丰富的Bi/Bi2S3异质界面,有效解决了上述障碍。理论和系统表征结果表明,构建的Bi/Bi2S3异质界面具有内置电场,显著提高了电导率,增强了Na+扩散动力学,缓冲了体积变化。经过这种改进,它可以提供很长的循环寿命,在1 A g−1下,在500次循环中具有500 mAh g−1的超高容量,并且具有出色的速率能力,即使在15 A g−1下也具有456 mAh g−1的容量。此外,在40w kg - 1的功率密度下,一个完整的电池可以实现180wh kg - 1的高能量密度。我们的研究为改善金属硫化物基sib电极材料的动力学和结构稳定性开辟了一条新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
33.70
自引率
0.00%
发文量
0
期刊最新文献
Understanding synergistic catalysis on Pt–Cu diatomic sites via operando X-ray absorption spectroscopy in sulfur redox reactions Characteristics, materials, and performance of Ru-containing oxide cathode materials for rechargeable batteries Versatile carbon-based materials from biomass for advanced electrochemical energy storage systems Recent advances in flexible self-oscillating actuators Anodes for low-temperature rechargeable batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1