Yu-wei Wang , Ming-ze Du , Tuo Wu , Tong Su , Li-ya Ai , Dong Jiang
{"title":"The application of ECM-derived biomaterials in cartilage tissue engineering","authors":"Yu-wei Wang , Ming-ze Du , Tuo Wu , Tong Su , Li-ya Ai , Dong Jiang","doi":"10.1016/j.mbm.2023.100007","DOIUrl":null,"url":null,"abstract":"<div><p>Given the tremendous increase in the risks of cartilage defects in the sports and aging population, current treatments are limited, and new repair strategies are needed. Cartilage tissue engineering (CTE) is a promising approach to handle this burden and several fabrication technologies and biomaterials have been developed these years. The extracellular matrix (ECM) of cartilage consists of a tissue-specific 3D microenvironment with excellent biomechanical and biochemical properties, which regulates cell proliferation, adhesion, migration, and differentiation, thus attracting a great deal of attention to the rapid development of CTE based on ECM components. New generations of biomaterials are being developed rapidly for use as scaffolds to mimic the natural ECM environment. In this review, we discuss such CTE scaffolds based on ECM-derived biomaterials by reviewing the biomaterials for CTE, the applications in different scaffolds and their processing approaches, as well as the current clinical applications of those ECM-based CTE scaffolds.</p></div>","PeriodicalId":100900,"journal":{"name":"Mechanobiology in Medicine","volume":"1 1","pages":"Article 100007"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanobiology in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949907023000074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Given the tremendous increase in the risks of cartilage defects in the sports and aging population, current treatments are limited, and new repair strategies are needed. Cartilage tissue engineering (CTE) is a promising approach to handle this burden and several fabrication technologies and biomaterials have been developed these years. The extracellular matrix (ECM) of cartilage consists of a tissue-specific 3D microenvironment with excellent biomechanical and biochemical properties, which regulates cell proliferation, adhesion, migration, and differentiation, thus attracting a great deal of attention to the rapid development of CTE based on ECM components. New generations of biomaterials are being developed rapidly for use as scaffolds to mimic the natural ECM environment. In this review, we discuss such CTE scaffolds based on ECM-derived biomaterials by reviewing the biomaterials for CTE, the applications in different scaffolds and their processing approaches, as well as the current clinical applications of those ECM-based CTE scaffolds.