Data augmentation using conditional generative adversarial network (cGAN): Application for prediction of corrosion pit depth and testing using neural network

IF 4.8 Q2 ENERGY & FUELS Journal of Pipeline Science and Engineering Pub Date : 2023-03-01 DOI:10.1016/j.jpse.2022.100091
Haile Woldesellasse, Solomon Tesfamariam
{"title":"Data augmentation using conditional generative adversarial network (cGAN): Application for prediction of corrosion pit depth and testing using neural network","authors":"Haile Woldesellasse,&nbsp;Solomon Tesfamariam","doi":"10.1016/j.jpse.2022.100091","DOIUrl":null,"url":null,"abstract":"<div><p>Machine learning (ML) based algorithms, due to their ability to model nonlinear and complex relationship, have been used in predicting corrosion pit depth in oil and gas pipelines. Class imbalance and data scarcity are the challenging problems while training ML models. This paper utilized a conditional generative adversarial network (cGAN) to handle class imbalance problem in a corrosion dataset by generating new samples. Utility of the cGAN data augmentation is evaluated by training an artificial neural network (ANN) model. In addition, random oversampling and Borderline-SMOTE data generating techniques are used for comparison with cGAN. The testing accuracy of the ANN model increased greatly when trained by the cGAN based augmented dataset and this model performance improvement can be useful for a pipeline integrity management.</p></div>","PeriodicalId":100824,"journal":{"name":"Journal of Pipeline Science and Engineering","volume":"3 1","pages":"Article 100091"},"PeriodicalIF":4.8000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pipeline Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667143322000634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 4

Abstract

Machine learning (ML) based algorithms, due to their ability to model nonlinear and complex relationship, have been used in predicting corrosion pit depth in oil and gas pipelines. Class imbalance and data scarcity are the challenging problems while training ML models. This paper utilized a conditional generative adversarial network (cGAN) to handle class imbalance problem in a corrosion dataset by generating new samples. Utility of the cGAN data augmentation is evaluated by training an artificial neural network (ANN) model. In addition, random oversampling and Borderline-SMOTE data generating techniques are used for comparison with cGAN. The testing accuracy of the ANN model increased greatly when trained by the cGAN based augmented dataset and this model performance improvement can be useful for a pipeline integrity management.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于条件生成对抗网络(cGAN)的数据增强:神经网络在腐蚀坑深度预测和测试中的应用
基于机器学习(ML)的算法,由于其建模非线性和复杂关系的能力,已被用于预测石油和天然气管道的腐蚀坑深度。在训练机器学习模型时,类不平衡和数据稀缺性是具有挑战性的问题。本文利用条件生成对抗网络(cGAN)通过生成新样本来处理腐蚀数据集中的类不平衡问题。通过训练人工神经网络(ANN)模型来评估cGAN数据增强的效用。此外,使用随机过采样和Borderline-SMOTE数据生成技术与cGAN进行比较。经过基于cGAN的增强数据集训练后,人工神经网络模型的测试精度大大提高,这对管道完整性管理具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.50
自引率
0.00%
发文量
0
期刊最新文献
Inhibition and co-condensation behaviour of 2-mercaptoethanol in top-of-line CO2 corrosion environments Supercritical/dense-phase CO2 pipeline leakage diffusion experiment and hazard distance prediction method Editorial board Crack assessment in spiral-welded pipelines repaired by composite patch: A SMART and failure assessment diagram approach Quantification of methane emissions from typical natural gas stations using on-site measurement technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1