{"title":"Learning-based 3D imaging from single structured-light image","authors":"Andrew-Hieu Nguyen , Olivia Rees , Zhaoyang Wang","doi":"10.1016/j.gmod.2023.101171","DOIUrl":null,"url":null,"abstract":"<div><p>Integrating structured-light technique with deep learning for single-shot 3D imaging has recently gained enormous attention due to its unprecedented robustness. This paper presents an innovative technique of supervised learning-based 3D imaging from a single grayscale structured-light image. The proposed approach uses a single-input, double-output convolutional neural network to transform a regular fringe-pattern image into two intermediate quantities which facilitate the subsequent 3D image reconstruction with high accuracy. A few experiments have been conducted to demonstrate the validity and robustness of the proposed technique.</p></div>","PeriodicalId":55083,"journal":{"name":"Graphical Models","volume":"126 ","pages":"Article 101171"},"PeriodicalIF":2.5000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphical Models","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1524070323000024","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 5
Abstract
Integrating structured-light technique with deep learning for single-shot 3D imaging has recently gained enormous attention due to its unprecedented robustness. This paper presents an innovative technique of supervised learning-based 3D imaging from a single grayscale structured-light image. The proposed approach uses a single-input, double-output convolutional neural network to transform a regular fringe-pattern image into two intermediate quantities which facilitate the subsequent 3D image reconstruction with high accuracy. A few experiments have been conducted to demonstrate the validity and robustness of the proposed technique.
期刊介绍:
Graphical Models is recognized internationally as a highly rated, top tier journal and is focused on the creation, geometric processing, animation, and visualization of graphical models and on their applications in engineering, science, culture, and entertainment. GMOD provides its readers with thoroughly reviewed and carefully selected papers that disseminate exciting innovations, that teach rigorous theoretical foundations, that propose robust and efficient solutions, or that describe ambitious systems or applications in a variety of topics.
We invite papers in five categories: research (contributions of novel theoretical or practical approaches or solutions), survey (opinionated views of the state-of-the-art and challenges in a specific topic), system (the architecture and implementation details of an innovative architecture for a complete system that supports model/animation design, acquisition, analysis, visualization?), application (description of a novel application of know techniques and evaluation of its impact), or lecture (an elegant and inspiring perspective on previously published results that clarifies them and teaches them in a new way).
GMOD offers its authors an accelerated review, feedback from experts in the field, immediate online publication of accepted papers, no restriction on color and length (when justified by the content) in the online version, and a broad promotion of published papers. A prestigious group of editors selected from among the premier international researchers in their fields oversees the review process.