{"title":"A study of CO2 two-phase flow in a near horizontal pipe","authors":"Zhilin Yang","doi":"10.1016/j.jpse.2022.100106","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, the observations from two different experimental studies on CO<sub>2</sub> two-phase flow regimes in a near horizontal pipe are analysed. These experiments show significant bubble entrainment in a stratified flow, and the bubble entrainment in liquid is found to be a dominant mechanism for the flow regime transition between the stratified and bubbly flow. The hydrodynamic slug flow is not observed in these experimental studies. The X-ray measurement of the experimental study in a near horizontal pipe of 44 mm internal diameter is processed to obtain the bubble volume fraction in the liquid layer, which is found to be a function of two-phase Froude number. This Froude number definition takes into account gas density and pipe inclination effects. A parametric study shows that the bubble entrainment into the liquid layer decreases significantly with an increase of pipe internal diameter.</p></div>","PeriodicalId":100824,"journal":{"name":"Journal of Pipeline Science and Engineering","volume":"3 2","pages":"Article 100106"},"PeriodicalIF":4.8000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pipeline Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667143322000786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, the observations from two different experimental studies on CO2 two-phase flow regimes in a near horizontal pipe are analysed. These experiments show significant bubble entrainment in a stratified flow, and the bubble entrainment in liquid is found to be a dominant mechanism for the flow regime transition between the stratified and bubbly flow. The hydrodynamic slug flow is not observed in these experimental studies. The X-ray measurement of the experimental study in a near horizontal pipe of 44 mm internal diameter is processed to obtain the bubble volume fraction in the liquid layer, which is found to be a function of two-phase Froude number. This Froude number definition takes into account gas density and pipe inclination effects. A parametric study shows that the bubble entrainment into the liquid layer decreases significantly with an increase of pipe internal diameter.