Lili Li, Qingwei Gao, Kun Wang, Qingliang Zhao, Huimin Zhou, Junqiu Jiang, Wangyang Mei
{"title":"Intermittent mixing facilitates energy recovery and low carbon emissions from high-solids anaerobic co-digestion of food waste and sewage sludge","authors":"Lili Li, Qingwei Gao, Kun Wang, Qingliang Zhao, Huimin Zhou, Junqiu Jiang, Wangyang Mei","doi":"10.1016/j.eti.2023.103339","DOIUrl":null,"url":null,"abstract":"<div><p>Mixing inside high-solids anaerobic co-digestion (HS-AcoD) is essential for process feasibility and economic sustainability. This study developed a proper energy assessment for a high solids anaerobic digestion-combined heat and power (AD-CHP) system to clarify the impact of mixing on methane production, energy recovery and carbon emission reduction during HS-AcoD of food waste (FW) and sewage sludge (SS). Results indicated that intermittent mixing enhanced methane production and shortened the lag phase compared with unmixing and continuous mixing. The modified Gompertz model yielded better fitting than the logistic and transfer function models via kinetic analysis. In the case of a scaled-up AD-CHP system, intermittent mixing with 15 min/h boosted energy output (2.14 × 10<sup>3</sup> kWh/tonne VS) at 21 d. Compared with continuous mixing, 15 min/h intermittent mixing at 13 d improved the energy recovery ratio from 31% to 45% and carbon emissions reduction from 0.25 t CO<sub>2</sub>/t VS to 0.35 t CO<sub>2</sub>/t VS. For a high availability of FW and SS in China, the AD-CHP system with intermittent mixing would have higher net energy output (128.4 × 10<sup>9</sup> kWh) and carbon emission reduction (15.3 million tonnes) by the full utilization of these biomasses. These results are expected to provide theoretical support for the high solids AD-CHP system in determining the optimal mixing strategy with maximum energy production for FW and SS disposal.</p></div>","PeriodicalId":11725,"journal":{"name":"Environmental Technology & Innovation","volume":"32 ","pages":"Article 103339"},"PeriodicalIF":6.7000,"publicationDate":"2023-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology & Innovation","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352186423003358","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mixing inside high-solids anaerobic co-digestion (HS-AcoD) is essential for process feasibility and economic sustainability. This study developed a proper energy assessment for a high solids anaerobic digestion-combined heat and power (AD-CHP) system to clarify the impact of mixing on methane production, energy recovery and carbon emission reduction during HS-AcoD of food waste (FW) and sewage sludge (SS). Results indicated that intermittent mixing enhanced methane production and shortened the lag phase compared with unmixing and continuous mixing. The modified Gompertz model yielded better fitting than the logistic and transfer function models via kinetic analysis. In the case of a scaled-up AD-CHP system, intermittent mixing with 15 min/h boosted energy output (2.14 × 103 kWh/tonne VS) at 21 d. Compared with continuous mixing, 15 min/h intermittent mixing at 13 d improved the energy recovery ratio from 31% to 45% and carbon emissions reduction from 0.25 t CO2/t VS to 0.35 t CO2/t VS. For a high availability of FW and SS in China, the AD-CHP system with intermittent mixing would have higher net energy output (128.4 × 109 kWh) and carbon emission reduction (15.3 million tonnes) by the full utilization of these biomasses. These results are expected to provide theoretical support for the high solids AD-CHP system in determining the optimal mixing strategy with maximum energy production for FW and SS disposal.
期刊介绍:
Environmental Technology & Innovation adopts a challenge-oriented approach to solutions by integrating natural sciences to promote a sustainable future. The journal aims to foster the creation and development of innovative products, technologies, and ideas that enhance the environment, with impacts across soil, air, water, and food in rural and urban areas.
As a platform for disseminating scientific evidence for environmental protection and sustainable development, the journal emphasizes fundamental science, methodologies, tools, techniques, and policy considerations. It emphasizes the importance of science and technology in environmental benefits, including smarter, cleaner technologies for environmental protection, more efficient resource processing methods, and the evidence supporting their effectiveness.