Selenate promoted stability improvement of nickel selenide nanosheet array with an amorphous NiOOH layer for seawater oxidation

IF 10 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Today Physics Pub Date : 2023-10-05 DOI:10.1016/j.mtphys.2023.101249
Hui Zhang , Xun He , Kai Dong , Yongchao Yao , Shengjun Sun , Min Zhang , Meng Yue , Chaoxin Yang , Dongdong Zheng , Qian Liu , Yonglan Luo , Binwu Ying , Sulaiman Alfaifi , Xuqiang Ji , Bo Tang , Xuping Sun
{"title":"Selenate promoted stability improvement of nickel selenide nanosheet array with an amorphous NiOOH layer for seawater oxidation","authors":"Hui Zhang ,&nbsp;Xun He ,&nbsp;Kai Dong ,&nbsp;Yongchao Yao ,&nbsp;Shengjun Sun ,&nbsp;Min Zhang ,&nbsp;Meng Yue ,&nbsp;Chaoxin Yang ,&nbsp;Dongdong Zheng ,&nbsp;Qian Liu ,&nbsp;Yonglan Luo ,&nbsp;Binwu Ying ,&nbsp;Sulaiman Alfaifi ,&nbsp;Xuqiang Ji ,&nbsp;Bo Tang ,&nbsp;Xuping Sun","doi":"10.1016/j.mtphys.2023.101249","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Seawater electrolysis offers significant potential for green hydrogen<span> production, the presence of harmful chlorine species, nevertheless, can cause severe anode corrosion. Here, we present our recent finding that selenate anions adsorbed nickel </span></span>selenide<span><span> nanosheet array with an </span>amorphous NiOOH layer on Ni foam (NiSe</span></span><sub>2</sub><span><span>@NiOOH/NF) serves as a high-efficiency and durable electrocatalyst for </span>oxygen evolution reaction (OER) in alkaline seawater. It requires an overpotential of 460 mV to obtain 500 mA cm</span><sup>−2</sup>. Impressively, it shows at least 100 h of electrolysis tolerance at 500 mA cm<sup>−2</sup><span>. Insights from electrochemical in situ Raman spectroscopy<span> and chlorine extraction tests unveil that selenite undergoes oxidation to selenate during the OER test, effectively suppressing hypochlorite generation.</span></span></p></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"38 ","pages":"Article 101249"},"PeriodicalIF":10.0000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529323002857","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

Seawater electrolysis offers significant potential for green hydrogen production, the presence of harmful chlorine species, nevertheless, can cause severe anode corrosion. Here, we present our recent finding that selenate anions adsorbed nickel selenide nanosheet array with an amorphous NiOOH layer on Ni foam (NiSe2@NiOOH/NF) serves as a high-efficiency and durable electrocatalyst for oxygen evolution reaction (OER) in alkaline seawater. It requires an overpotential of 460 mV to obtain 500 mA cm−2. Impressively, it shows at least 100 h of electrolysis tolerance at 500 mA cm−2. Insights from electrochemical in situ Raman spectroscopy and chlorine extraction tests unveil that selenite undergoes oxidation to selenate during the OER test, effectively suppressing hypochlorite generation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
硒酸盐促进了非晶NiOOH层硒化镍纳米片阵列的稳定性
海水电解为绿色氢气生产提供了巨大的潜力,然而,有害氯物种的存在会导致严重的阳极腐蚀。在这里,我们介绍了我们最近的发现,硒酸根阴离子吸附了在镍泡沫上具有无定形NiOOH层的硒化镍纳米片阵列(NiSe2@NiOOH/NF)是一种用于碱性海水中析氧反应(OER)的高效耐用的电催化剂。它需要460 mV的过电位才能获得500 mA cm−2。令人印象深刻的是,它在500 mA cm−2下显示出至少100小时的电解耐受性。电化学原位拉曼光谱和氯提取测试的结果表明,亚硒酸盐在OER测试过程中被氧化为硒酸盐,有效抑制了次氯酸盐的产生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
期刊最新文献
MXene Nb2C/MoS2 Heterostructure: Nonlinear Optical Properties and a New Broadband Saturable Absorber for Ultrafast Photonics Low-temperature annealing induces superior shock-resistant performance in FeCoCrNiCu high-entropy alloy Effectively Tuning Phonon Transport across Al/nonmetal Interfaces through Controlling Interfacial Bonding Strength without Modifying Thermal Conductivity Vacancy regulation to achieve N-type high thermoelectric performance PbSe through titanium-incorporation Crystalline FeOCl as a novel saturable absorber for broadband ultrafast photonic applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1