Compression of Surface Texture Acceleration Signal Based on Spectrum Characteristics

Q1 Computer Science Virtual Reality Intelligent Hardware Pub Date : 2023-04-01 DOI:10.1016/j.vrih.2022.01.006
Dongyan Nie , Xiaoying Sun
{"title":"Compression of Surface Texture Acceleration Signal Based on Spectrum Characteristics","authors":"Dongyan Nie ,&nbsp;Xiaoying Sun","doi":"10.1016/j.vrih.2022.01.006","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Adequate-data collection could enhance the realism of surface texture haptic online-rendering or offline-playback. A parallel challenge is how to reduce communication delays and improve storage space utilization.</p></div><div><h3>Methods</h3><p>Based on the similarity of the short-term amplitude spectrumtrend, this paper proposes a frequency-domain compression method. A compression framework is designed, firstly to map the amplitude spectrum into a trend similarity grayscale image, compress it with the stillpicture-compression method, and then to adaptively encode the maximum amplitude and part of the initial phase of each time-window, achieving the final compression.</p></div><div><h3>Results</h3><p>The comparison between the original signal and the recovered signal shows that when the time-frequency similarity is 90%, the average compression ratio of our method is 9.85% in the case of a single interact point. The subjective score for the similarity reached an excellent level, with an average score of 87.85.</p></div><div><h3>Conclusions</h3><p>Our method can be used for offline compression of vibrotactile data. For the case of multi-interact points in space, the trend similarity grayscale image can be reused, and the compression ratio is further reduced.</p></div>","PeriodicalId":33538,"journal":{"name":"Virtual Reality Intelligent Hardware","volume":"5 2","pages":"Pages 110-123"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virtual Reality Intelligent Hardware","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2096579622000213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Adequate-data collection could enhance the realism of surface texture haptic online-rendering or offline-playback. A parallel challenge is how to reduce communication delays and improve storage space utilization.

Methods

Based on the similarity of the short-term amplitude spectrumtrend, this paper proposes a frequency-domain compression method. A compression framework is designed, firstly to map the amplitude spectrum into a trend similarity grayscale image, compress it with the stillpicture-compression method, and then to adaptively encode the maximum amplitude and part of the initial phase of each time-window, achieving the final compression.

Results

The comparison between the original signal and the recovered signal shows that when the time-frequency similarity is 90%, the average compression ratio of our method is 9.85% in the case of a single interact point. The subjective score for the similarity reached an excellent level, with an average score of 87.85.

Conclusions

Our method can be used for offline compression of vibrotactile data. For the case of multi-interact points in space, the trend similarity grayscale image can be reused, and the compression ratio is further reduced.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于频谱特征的表面纹理加速信号压缩
背景充分的数据采集可以提高表面纹理触觉在线渲染或离线回放的真实感。一个并行的挑战是如何减少通信延迟和提高存储空间利用率。方法基于短期振幅谱趋势的相似性,提出了一种频域压缩方法。设计了压缩框架,首先将振幅谱映射成趋势相似灰度图像,采用静态图像压缩方法进行压缩,然后对每个时间窗的最大振幅和部分初始相位进行自适应编码,实现最终压缩。结果原始信号与恢复信号的对比表明,当时频相似度为90%时,在单交互点情况下,本文方法的平均压缩比为9.85%。相似度主观得分达到优秀水平,平均得分87.85。结论sour方法可用于振动触觉数据的离线压缩。对于空间中存在多交互点的情况,趋势相似度灰度图像可以重复使用,压缩比进一步降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Virtual Reality  Intelligent Hardware
Virtual Reality Intelligent Hardware Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
6.40
自引率
0.00%
发文量
35
审稿时长
12 weeks
期刊最新文献
Co-salient object detection with iterative purification and predictive optimization CURDIS: A template for incremental curve discretization algorithms and its application to conics Mesh representation matters: investigating the influence of different mesh features on perceptual and spatial fidelity of deep 3D morphable models Music-stylized hierarchical dance synthesis with user control Pre-training transformer with dual-branch context content module for table detection in document images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1