Subcortical coding of predictable and unsupervised sound-context associations

Chi Chen , Hugo Cruces-Solís , Alexandra Ertman , Livia de Hoz
{"title":"Subcortical coding of predictable and unsupervised sound-context associations","authors":"Chi Chen ,&nbsp;Hugo Cruces-Solís ,&nbsp;Alexandra Ertman ,&nbsp;Livia de Hoz","doi":"10.1016/j.crneur.2023.100110","DOIUrl":null,"url":null,"abstract":"<div><p>Our environment is made of a myriad of stimuli present in combinations often patterned in predictable ways. For example, there is a strong association between where we are and the sounds we hear. Like many environmental patterns, sound-context associations are learned implicitly, in an unsupervised manner, and are highly informative and predictive of normality. Yet, we know little about where and how unsupervised sound-context associations are coded in the brain. Here we measured plasticity in the auditory midbrain of mice living over days in an enriched task-less environment in which entering a context triggered sound with different degrees of predictability. Plasticity in the auditory midbrain, a hub of auditory input and multimodal feedback, developed over days and reflected learning of contextual information in a manner that depended on the predictability of the sound-context association and not on reinforcement. Plasticity manifested as an increase in response gain and tuning shift that correlated with a general increase in neuronal frequency discrimination. Thus, the auditory midbrain is sensitive to unsupervised predictable sound-context associations, revealing a subcortical engagement in the detection of contextual sounds. By increasing frequency resolution, this detection might facilitate the processing of behaviorally relevant foreground information described to occur in cortical auditory structures.</p></div>","PeriodicalId":72752,"journal":{"name":"Current research in neurobiology","volume":"5 ","pages":"Article 100110"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current research in neurobiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665945X23000384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Our environment is made of a myriad of stimuli present in combinations often patterned in predictable ways. For example, there is a strong association between where we are and the sounds we hear. Like many environmental patterns, sound-context associations are learned implicitly, in an unsupervised manner, and are highly informative and predictive of normality. Yet, we know little about where and how unsupervised sound-context associations are coded in the brain. Here we measured plasticity in the auditory midbrain of mice living over days in an enriched task-less environment in which entering a context triggered sound with different degrees of predictability. Plasticity in the auditory midbrain, a hub of auditory input and multimodal feedback, developed over days and reflected learning of contextual information in a manner that depended on the predictability of the sound-context association and not on reinforcement. Plasticity manifested as an increase in response gain and tuning shift that correlated with a general increase in neuronal frequency discrimination. Thus, the auditory midbrain is sensitive to unsupervised predictable sound-context associations, revealing a subcortical engagement in the detection of contextual sounds. By increasing frequency resolution, this detection might facilitate the processing of behaviorally relevant foreground information described to occur in cortical auditory structures.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可预测和无监督的声音-语境关联的皮层下编码
我们的环境是由无数的刺激组成的,这些刺激以可预测的方式组合在一起。例如,我们所处的位置和我们听到的声音之间有很强的联系。像许多环境模式一样,声音-上下文关联是隐性学习的,以一种无监督的方式,具有高度信息性和预测性。然而,我们对无监督的声音-背景关联在大脑中的编码位置和方式知之甚少。在这里,我们测量了老鼠听觉中脑的可塑性,这些老鼠在一个丰富的无任务环境中生活了几天,在这个环境中,进入一个环境会触发不同程度的可预测性的声音。听觉中脑是听觉输入和多模态反馈的中枢,其可塑性经过数天的发展,以一种依赖于声音-情境关联的可预测性而非强化的方式反映了对上下文信息的学习。可塑性表现为响应增益和调谐位移的增加,这与神经元频率辨别的普遍增加有关。因此,听觉中脑对无监督的、可预测的声音与环境的关联很敏感,这表明皮层下参与了对环境声音的探测。通过提高频率分辨率,这种检测可能有助于处理与行为相关的前景信息,这些信息被描述为发生在皮层听觉结构中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
期刊最新文献
Table of Contents Intranasal insulin attenuates hypoxia-ischemia-induced short-term sensorimotor behavioral disturbances, neuronal apoptosis, and brain damage in neonatal rats Protective effects of Embelin in Benzo[α]pyrene induced cognitive and memory impairment in experimental model of mice Physiological features of parvalbumin-expressing GABAergic interneurons contributing to high-frequency oscillations in the cerebral cortex Hearing loss in juvenile rats leads to excessive play fighting and hyperactivity, mild cognitive deficits and altered neuronal activity in the prefrontal cortex
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1