A COVID-19 vaccine effectiveness model using the susceptible-exposed-infectious-recovered model

Sabariah Saharan, Cunzhe Tee
{"title":"A COVID-19 vaccine effectiveness model using the susceptible-exposed-infectious-recovered model","authors":"Sabariah Saharan,&nbsp;Cunzhe Tee","doi":"10.1016/j.health.2023.100269","DOIUrl":null,"url":null,"abstract":"<div><p>Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) caused the start of the COVID-19 outbreak in the world, including Malaysia and Thailand. This study identifies the trend of the COVID-19 outbreak before and after the vaccination campaign by using the Susceptible-Exposed-Infectious-Recovered (SEIR) and Susceptible-Exposed-Infectious-Recovered-Vaccinated (SEIRV) models. Moreover, we predict the daily reported death and recovery cases using the SEIR model and Holt's linear trend method and then evaluate their performance. The data used in this study is real data from Malaysia and Thailand. The SEIRV model provides a comprehensive view of the efficacy of COVID-19 vaccinations in curbing the COVID-19 outbreak. This research reveals that the SEIR model outperforms Holt's linear trend method in predicting daily reported cases.</p></div>","PeriodicalId":73222,"journal":{"name":"Healthcare analytics (New York, N.Y.)","volume":"4 ","pages":"Article 100269"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare analytics (New York, N.Y.)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772442523001363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) caused the start of the COVID-19 outbreak in the world, including Malaysia and Thailand. This study identifies the trend of the COVID-19 outbreak before and after the vaccination campaign by using the Susceptible-Exposed-Infectious-Recovered (SEIR) and Susceptible-Exposed-Infectious-Recovered-Vaccinated (SEIRV) models. Moreover, we predict the daily reported death and recovery cases using the SEIR model and Holt's linear trend method and then evaluate their performance. The data used in this study is real data from Malaysia and Thailand. The SEIRV model provides a comprehensive view of the efficacy of COVID-19 vaccinations in curbing the COVID-19 outbreak. This research reveals that the SEIR model outperforms Holt's linear trend method in predicting daily reported cases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于易感-暴露-感染-恢复模型的COVID-19疫苗有效性模型
严重急性呼吸综合征冠状病毒2型(SARS-CoV-2)引发了包括马来西亚和泰国在内的世界范围内的COVID-19疫情。本研究通过使用易感-暴露-感染-恢复(SEIR)和易感-暴露-感染-恢复-接种(SEIRV)模型确定了疫苗接种运动前后COVID-19爆发的趋势。利用SEIR模型和Holt线性趋势法对日报告死亡病例和康复病例进行预测,并对其性能进行评价。本研究使用的数据是来自马来西亚和泰国的真实数据。SEIRV模型提供了对COVID-19疫苗在遏制COVID-19爆发中的效果的全面看法。本研究表明,SEIR模型在预测每日报告病例方面优于Holt的线性趋势方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Healthcare analytics (New York, N.Y.)
Healthcare analytics (New York, N.Y.) Applied Mathematics, Modelling and Simulation, Nursing and Health Professions (General)
CiteScore
4.40
自引率
0.00%
发文量
0
审稿时长
79 days
期刊最新文献
Optimized early fusion of handcrafted and deep learning descriptors for voice pathology detection and classification A deep neural network model with spectral correlation function for electrocardiogram classification and diagnosis of atrial fibrillation An ensemble convolutional neural network model for brain stroke prediction using brain computed tomography images A hierarchical Bayesian approach for identifying socioeconomic factors influencing self-rated health in Japan An electrocardiogram signal classification using a hybrid machine learning and deep learning approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1