Xueying Lyu , Liang Yun , Jiangen Xu , Han Liu , Xinan Yu , Ping Peng , Mukun Ouyang , Yu Luo
{"title":"Sealing capacity evolution of gypsum salt caprocks under multi-cycle alternating stress during operations of underground gas storage","authors":"Xueying Lyu , Liang Yun , Jiangen Xu , Han Liu , Xinan Yu , Ping Peng , Mukun Ouyang , Yu Luo","doi":"10.1016/j.petrol.2022.111244","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Caprock sealing ability is one of the key geological factors to ensure the stable and safe operation of the underground gas storage<span> (UGS). Gypsum salt rock<span> is the high-quality caprock for oil and gas reservoirs, however, the effect of cyclic stress on its sealing capacity is still unclear, which restricts the construction progress of this kind of UGS. Therefore, taking the H UGS in the Sichuan Basin in China as an example, this paper analyzes the initial sealing capacity of gypsum salt caprock using cast thin section, conventional physical property test, nuclear magnetic resonance and breakthrough pressure tests. On this basis, study the variation characteristics of physical and mechanical parameters of gypsum salt caprock under cyclic stress using cyclic stress loading and unloading experiment, and then analyze the evolution law of its sealing capacity. The results show that gypsum salt caprocks of H UGS can be used as a good tight caprock with the porosity less than 1.0%, permeability less than 0.005 mD, breakthrough pressure greater than 6.0 MPa and triaxial </span></span></span>compressive strength greater than 210 MPa. In addition, the physical properties of gypsum salt caprock become worse and the sealing capacity increases under cyclic stress, and physical and mechanical changes of gypsum salt caprock mainly occur in the first 30 cycles accounting for about 75%. Moreover, with the increase of cycles, the </span>Poisson's ratio<span> increases by 88% while the change range of elastic modulus is only 6.4%, indicating that gypsum salt caprocks mainly expands laterally and still maintain good elasticity. However, when the cycle times reach a certain threshold of 1002, the cumulative plastic strain of gypsum salt rock will become larger and larger until fracture. And the gypsum salt caprocks can be effective cover in the 184 cycles of loading and unloading with the maximum pressure threshold of 18 MPa and minimum pressure threshold of 1 MPa. This research results can provide theoretical guidance for cap rock stability analysis and operation parameter design of gas reservoir.</span></p></div>","PeriodicalId":16717,"journal":{"name":"Journal of Petroleum Science and Engineering","volume":"220 ","pages":"Article 111244"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Petroleum Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920410522010968","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Caprock sealing ability is one of the key geological factors to ensure the stable and safe operation of the underground gas storage (UGS). Gypsum salt rock is the high-quality caprock for oil and gas reservoirs, however, the effect of cyclic stress on its sealing capacity is still unclear, which restricts the construction progress of this kind of UGS. Therefore, taking the H UGS in the Sichuan Basin in China as an example, this paper analyzes the initial sealing capacity of gypsum salt caprock using cast thin section, conventional physical property test, nuclear magnetic resonance and breakthrough pressure tests. On this basis, study the variation characteristics of physical and mechanical parameters of gypsum salt caprock under cyclic stress using cyclic stress loading and unloading experiment, and then analyze the evolution law of its sealing capacity. The results show that gypsum salt caprocks of H UGS can be used as a good tight caprock with the porosity less than 1.0%, permeability less than 0.005 mD, breakthrough pressure greater than 6.0 MPa and triaxial compressive strength greater than 210 MPa. In addition, the physical properties of gypsum salt caprock become worse and the sealing capacity increases under cyclic stress, and physical and mechanical changes of gypsum salt caprock mainly occur in the first 30 cycles accounting for about 75%. Moreover, with the increase of cycles, the Poisson's ratio increases by 88% while the change range of elastic modulus is only 6.4%, indicating that gypsum salt caprocks mainly expands laterally and still maintain good elasticity. However, when the cycle times reach a certain threshold of 1002, the cumulative plastic strain of gypsum salt rock will become larger and larger until fracture. And the gypsum salt caprocks can be effective cover in the 184 cycles of loading and unloading with the maximum pressure threshold of 18 MPa and minimum pressure threshold of 1 MPa. This research results can provide theoretical guidance for cap rock stability analysis and operation parameter design of gas reservoir.
期刊介绍:
The objective of the Journal of Petroleum Science and Engineering is to bridge the gap between the engineering, the geology and the science of petroleum and natural gas by publishing explicitly written articles intelligible to scientists and engineers working in any field of petroleum engineering, natural gas engineering and petroleum (natural gas) geology. An attempt is made in all issues to balance the subject matter and to appeal to a broad readership.
The Journal of Petroleum Science and Engineering covers the fields of petroleum (and natural gas) exploration, production and flow in its broadest possible sense. Topics include: origin and accumulation of petroleum and natural gas; petroleum geochemistry; reservoir engineering; reservoir simulation; rock mechanics; petrophysics; pore-level phenomena; well logging, testing and evaluation; mathematical modelling; enhanced oil and gas recovery; petroleum geology; compaction/diagenesis; petroleum economics; drilling and drilling fluids; thermodynamics and phase behavior; fluid mechanics; multi-phase flow in porous media; production engineering; formation evaluation; exploration methods; CO2 Sequestration in geological formations/sub-surface; management and development of unconventional resources such as heavy oil and bitumen, tight oil and liquid rich shales.