Fluid Independent Flow Determination by Surface Acoustic Wave Driven Ultrasonic Techniques

Andreas Hefele;Christoph Strobl;Erik Baigar;Georg Kurzmaier;Alexander Reiner;Andreas L. Hörner;Achim Wixforth
{"title":"Fluid Independent Flow Determination by Surface Acoustic Wave Driven Ultrasonic Techniques","authors":"Andreas Hefele;Christoph Strobl;Erik Baigar;Georg Kurzmaier;Alexander Reiner;Andreas L. Hörner;Achim Wixforth","doi":"10.1109/OJUFFC.2021.3120234","DOIUrl":null,"url":null,"abstract":"A fluid-independent ultrasonic approach for flow determination in microchannels in the harsh environment of an ultra high pressure liquid chromatography (UHPLC) system is presented. Ultrasonic waves in the fluid are excited by separate media surface acoustic waves (SAW) of Rayleigh-Wave type. The LiNbO3 SAW chip being equipped with interdigitated transducers for SAW excitation also marks the bottom of the fluid channel and thus allows for very effective SAW coupling to the fluid. The channel ceiling acts as an acoustical mirror for longitudinal ultrasonic waves propagating through the fluid. To deduce the fluid flow from the ultrasonic transmission after reflection, we employ a combination of time differential phase and time of flight measurements with a two port vector network analyzer. To verify and assign our experimental results, we use an adapted time explicit finite element method. In the simulation, both the piezoelectric single crystal and the fluid are included and we solve the linear Navier-Stokes equation to evaluate the background flow. By changing the ultrasonic propagation direction, we are able to deduce the fluid volume flow over time with very high accuracy, independent of the actual liquid in the channel.","PeriodicalId":73301,"journal":{"name":"IEEE open journal of ultrasonics, ferroelectrics, and frequency control","volume":"1 ","pages":"11-20"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9292640/9377491/09576509.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of ultrasonics, ferroelectrics, and frequency control","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9576509/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A fluid-independent ultrasonic approach for flow determination in microchannels in the harsh environment of an ultra high pressure liquid chromatography (UHPLC) system is presented. Ultrasonic waves in the fluid are excited by separate media surface acoustic waves (SAW) of Rayleigh-Wave type. The LiNbO3 SAW chip being equipped with interdigitated transducers for SAW excitation also marks the bottom of the fluid channel and thus allows for very effective SAW coupling to the fluid. The channel ceiling acts as an acoustical mirror for longitudinal ultrasonic waves propagating through the fluid. To deduce the fluid flow from the ultrasonic transmission after reflection, we employ a combination of time differential phase and time of flight measurements with a two port vector network analyzer. To verify and assign our experimental results, we use an adapted time explicit finite element method. In the simulation, both the piezoelectric single crystal and the fluid are included and we solve the linear Navier-Stokes equation to evaluate the background flow. By changing the ultrasonic propagation direction, we are able to deduce the fluid volume flow over time with very high accuracy, independent of the actual liquid in the channel.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
表面声波驱动超声技术的流体独立流动测定
提出了一种在超高压液相色谱(UHPLC)系统的恶劣环境下进行微通道流量测定的不依赖流体的超声方法。流体中的超声波是由瑞利波型分离介质表面声波激发的。LiNbO3 SAW芯片配备了用于SAW激励的交叉换能器,也标记了流体通道的底部,从而允许非常有效的SAW与流体耦合。通道顶板作为纵向超声波在流体中传播的声学反射镜。为了从反射后的超声波传输中推断流体流动,我们采用了双端口矢量网络分析仪的时差相位和飞行时间测量相结合的方法。为了验证和分配我们的实验结果,我们使用了一种适应的时间显式有限元方法。在仿真中,同时考虑压电单晶和流体,通过求解线性Navier-Stokes方程来计算背景流。通过改变超声波传播方向,我们能够以非常高的精度推断出流体体积流量随时间的变化,而不依赖于通道中的实际液体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Preliminary Demonstration of Pulse-Echo Imaging With a Long Monolithic Flexible CMUT Array The 3D Estimation of Mechanical Wave Velocities in the Heart: Methods and Insights Direct Digital Simultaneous Phase-Amplitude Noise and Allan Deviation Measurement System Rochelle Salt Revisited for Eco-Designed Ultrasonic Transducers 3-D Object Reconstruction From Outdoor Ultrasonic Image and Variation Autoencoder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1