Editorial IEEE Open Journal of Circuits and Systems: Special Section on Advanced Power Electronics Techniques for Smart Grid Applications

IF 2.4 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE open journal of circuits and systems Pub Date : 2022-11-23 DOI:10.1109/OJCAS.2022.3218914
Mengqi Wang;Xiu Yao
{"title":"Editorial IEEE Open Journal of Circuits and Systems: Special Section on Advanced Power Electronics Techniques for Smart Grid Applications","authors":"Mengqi Wang;Xiu Yao","doi":"10.1109/OJCAS.2022.3218914","DOIUrl":null,"url":null,"abstract":"The Advent of modern power electronics has brought tremendous impact on emerging power systems. In an emerging smart grid, as the number of inverter- and converter-based devices increases to more than hundreds of thousands, it is rather intuitive that the state-of-the-art technical solutions and industry practices will no longer be sustainable. The combination of power electronics and advanced control technologies serve as the key enabler of a wide range of smart grid applications. While tremendous progress has been made in advancing the standalone power electronics technologies, much less attention has been paid to bridging the gap between traditionally disjoint research areas – power electronics, power systems, and intelligent control – ultimately facilitating the vision of 100% carbonneutral energy systems come to fruition. There is a growing interest in the concepts of power electronics-enabled power systems around the world. This special section includes two high-quality papers, which cover the trending topic on the control strategy for inverters that are essential for Smart Grid applications.","PeriodicalId":93442,"journal":{"name":"IEEE open journal of circuits and systems","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2022-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8784029/9684754/09961069.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9961069/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The Advent of modern power electronics has brought tremendous impact on emerging power systems. In an emerging smart grid, as the number of inverter- and converter-based devices increases to more than hundreds of thousands, it is rather intuitive that the state-of-the-art technical solutions and industry practices will no longer be sustainable. The combination of power electronics and advanced control technologies serve as the key enabler of a wide range of smart grid applications. While tremendous progress has been made in advancing the standalone power electronics technologies, much less attention has been paid to bridging the gap between traditionally disjoint research areas – power electronics, power systems, and intelligent control – ultimately facilitating the vision of 100% carbonneutral energy systems come to fruition. There is a growing interest in the concepts of power electronics-enabled power systems around the world. This special section includes two high-quality papers, which cover the trending topic on the control strategy for inverters that are essential for Smart Grid applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
IEEE电路与系统开放杂志:智能电网应用的先进电力电子技术专题
现代电力电子技术的出现给新兴的电力系统带来了巨大的影响。在新兴的智能电网中,随着基于逆变器和转换器的设备数量增加到数十万台以上,人们很直观地看到,最先进的技术解决方案和行业实践将不再可持续。电力电子技术和先进控制技术的结合是广泛智能电网应用的关键推动者。尽管在推进独立的电力电子技术方面取得了巨大进展,但人们对弥合传统上脱节的研究领域——电力电子、电力系统和智能控制——之间的差距却关注得更少,最终推动了100%碳中和能源系统的愿景实现。世界各地对电力电子系统的概念越来越感兴趣。本专题部分包括两篇高质量的论文,涵盖了智能电网应用中必不可少的逆变器控制策略的趋势主题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
19 weeks
期刊最新文献
Double MAC on a Cell: A 22-nm 8T-SRAM-Based Analog In-Memory Accelerator for Binary/Ternary Neural Networks Featuring Split Wordline A Companding Technique to Reduce Peak-to-Average Ratio in Discrete Multitone Wireline Receivers Low-Power On-Chip Energy Harvesting: From Interface Circuits Perspective A 10 GHz Dual-Loop PLL With Active Cycle-Jitter Correction Achieving 12dB Spur and 29% Jitter Reduction A 45Gb/s Analog Multi-Tone Receiver Utilizing a 6-Tap MIMO-FFE in 22nm FDSOI
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1