{"title":"Polychronous Oscillatory Cellular Neural Networks for Solving Graph Coloring Problems","authors":"Richelle L. Smith;Thomas H. Lee","doi":"10.1109/OJCAS.2023.3262204","DOIUrl":null,"url":null,"abstract":"This paper presents polychronous oscillatory cellular neural networks, designed for solving graph coloring problems. We propose to apply the Potts model to the four-coloring problem, using a network of locally connected oscillators under superharmonic injection locking. Based on our mapping of the Potts model to injection-locked oscillators, we utilize oscillators under divide-by-4 injection locking. Four possible states per oscillator are encoded in a polychronous fashion, where the steady state oscillator phases are analogous to the time-locked neuronal firing patterns of polychronous neurons. We apply impulse sensitivity function (ISF) theory to model and optimize the high-order injection locking of the oscillators. CMOS circuit design of a polychronous oscillatory neural network is presented, and coloring of a geographic map is demonstrated, with simulation results and design guidelines. There is good agreement between theory and Spectre simulation.","PeriodicalId":93442,"journal":{"name":"IEEE open journal of circuits and systems","volume":"4 ","pages":"156-164"},"PeriodicalIF":2.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8784029/10019301/10081435.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10081435/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1
Abstract
This paper presents polychronous oscillatory cellular neural networks, designed for solving graph coloring problems. We propose to apply the Potts model to the four-coloring problem, using a network of locally connected oscillators under superharmonic injection locking. Based on our mapping of the Potts model to injection-locked oscillators, we utilize oscillators under divide-by-4 injection locking. Four possible states per oscillator are encoded in a polychronous fashion, where the steady state oscillator phases are analogous to the time-locked neuronal firing patterns of polychronous neurons. We apply impulse sensitivity function (ISF) theory to model and optimize the high-order injection locking of the oscillators. CMOS circuit design of a polychronous oscillatory neural network is presented, and coloring of a geographic map is demonstrated, with simulation results and design guidelines. There is good agreement between theory and Spectre simulation.