Polychronous Oscillatory Cellular Neural Networks for Solving Graph Coloring Problems

IF 2.4 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE open journal of circuits and systems Pub Date : 2023-01-01 DOI:10.1109/OJCAS.2023.3262204
Richelle L. Smith;Thomas H. Lee
{"title":"Polychronous Oscillatory Cellular Neural Networks for Solving Graph Coloring Problems","authors":"Richelle L. Smith;Thomas H. Lee","doi":"10.1109/OJCAS.2023.3262204","DOIUrl":null,"url":null,"abstract":"This paper presents polychronous oscillatory cellular neural networks, designed for solving graph coloring problems. We propose to apply the Potts model to the four-coloring problem, using a network of locally connected oscillators under superharmonic injection locking. Based on our mapping of the Potts model to injection-locked oscillators, we utilize oscillators under divide-by-4 injection locking. Four possible states per oscillator are encoded in a polychronous fashion, where the steady state oscillator phases are analogous to the time-locked neuronal firing patterns of polychronous neurons. We apply impulse sensitivity function (ISF) theory to model and optimize the high-order injection locking of the oscillators. CMOS circuit design of a polychronous oscillatory neural network is presented, and coloring of a geographic map is demonstrated, with simulation results and design guidelines. There is good agreement between theory and Spectre simulation.","PeriodicalId":93442,"journal":{"name":"IEEE open journal of circuits and systems","volume":"4 ","pages":"156-164"},"PeriodicalIF":2.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8784029/10019301/10081435.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10081435/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents polychronous oscillatory cellular neural networks, designed for solving graph coloring problems. We propose to apply the Potts model to the four-coloring problem, using a network of locally connected oscillators under superharmonic injection locking. Based on our mapping of the Potts model to injection-locked oscillators, we utilize oscillators under divide-by-4 injection locking. Four possible states per oscillator are encoded in a polychronous fashion, where the steady state oscillator phases are analogous to the time-locked neuronal firing patterns of polychronous neurons. We apply impulse sensitivity function (ISF) theory to model and optimize the high-order injection locking of the oscillators. CMOS circuit design of a polychronous oscillatory neural network is presented, and coloring of a geographic map is demonstrated, with simulation results and design guidelines. There is good agreement between theory and Spectre simulation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求解图着色问题的多时振荡细胞神经网络
本文提出了一种用于解决图着色问题的多同步振荡细胞神经网络。我们利用超谐波注入锁定下的局部连接振子网络,将Potts模型应用于四着色问题。基于Potts模型到注入锁定振子的映射,我们利用了除以4注入锁定下的振子。每个振荡器以多时方式编码四种可能的状态,其中稳态振荡器相位类似于多时神经元的时间锁定神经元放电模式。利用脉冲灵敏度函数(ISF)理论对振子的高阶注入锁定进行建模和优化。提出了一种同步振荡神经网络的CMOS电路设计,并演示了地图的着色,给出了仿真结果和设计指南。仿真结果与理论结果吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
19 weeks
期刊最新文献
Energy Consumption Modeling of 2-D and 3-D Decoder Circuits 2024 Index IEEE Open Journal of Circuits and Systems Vol. 5 IEEE Circuits and Systems Society Front Cover Analysis and Verilog-A Modeling of Floating-Gate Transistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1