High Efficiency Power Management Unit for Implantable Optical-Electrical Stimulators

IF 2.4 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE open journal of circuits and systems Pub Date : 2023-01-01 DOI:10.1109/OJCAS.2023.3240644
Noora Almarri;Dai Jiang;Peter J. Langlois;Mohamad Rahal;Andreas Demosthenous
{"title":"High Efficiency Power Management Unit for Implantable Optical-Electrical Stimulators","authors":"Noora Almarri;Dai Jiang;Peter J. Langlois;Mohamad Rahal;Andreas Demosthenous","doi":"10.1109/OJCAS.2023.3240644","DOIUrl":null,"url":null,"abstract":"Battery-less active implantable devices are of interest because they offer longer life span and eliminate costly battery replacement surgical interventions. This is possible as a result of advances in inductive power transfer and development of power management circuits to maximize the overall power transfer and provide various voltage levels for multi-functional implantable devices. Rehabilitation therapy using optical stimulation of genetically modified peripheral neurons requires high current loads. Standard rectification topologies are inefficient and have associated voltage drops unsuited for miniaturized implants. This paper presents an integrated power management unit (PMU) for an optical-electrical stimulator to be used in the treatment of motor neurone disease. It includes a power-efficient regulating rectifier with a novel body biased high-speed comparator providing 3.3 V for the operation of the stimulator, a 3-stage latch-up charge pump with 12 V output for the input stage of the optical-electrical stimulator, and 1.8 V for digital control logic. The chip was fabricated in a $0.18 ~\\mu \\text{m}$ CMOS process. Measured results show that for a regulated output of 3.3 V delivering 30.3 mW power, the peak power conversion efficiency is 84.2% at 6.78 MHz inductive link tunable frequency reducing to 70.3% at 13.56 MHz. The charge pump with on chip capacitors has 90.9% measured voltage conversion efficiency.","PeriodicalId":93442,"journal":{"name":"IEEE open journal of circuits and systems","volume":"4 ","pages":"3-14"},"PeriodicalIF":2.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8784029/10019301/10029935.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10029935/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 3

Abstract

Battery-less active implantable devices are of interest because they offer longer life span and eliminate costly battery replacement surgical interventions. This is possible as a result of advances in inductive power transfer and development of power management circuits to maximize the overall power transfer and provide various voltage levels for multi-functional implantable devices. Rehabilitation therapy using optical stimulation of genetically modified peripheral neurons requires high current loads. Standard rectification topologies are inefficient and have associated voltage drops unsuited for miniaturized implants. This paper presents an integrated power management unit (PMU) for an optical-electrical stimulator to be used in the treatment of motor neurone disease. It includes a power-efficient regulating rectifier with a novel body biased high-speed comparator providing 3.3 V for the operation of the stimulator, a 3-stage latch-up charge pump with 12 V output for the input stage of the optical-electrical stimulator, and 1.8 V for digital control logic. The chip was fabricated in a $0.18 ~\mu \text{m}$ CMOS process. Measured results show that for a regulated output of 3.3 V delivering 30.3 mW power, the peak power conversion efficiency is 84.2% at 6.78 MHz inductive link tunable frequency reducing to 70.3% at 13.56 MHz. The charge pump with on chip capacitors has 90.9% measured voltage conversion efficiency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于植入式光电刺激器的高效电源管理单元
无电池有源植入式设备之所以引起人们的兴趣,是因为它们提供了更长的使用寿命,并消除了昂贵的电池更换手术干预。这是由于感应功率传输的进步和功率管理电路的发展,以最大限度地提高整体功率传输,并为多功能植入式设备提供各种电压水平。利用光刺激基因修饰的周围神经元进行康复治疗需要高电流负荷。标准整流拓扑是低效的,并且有相关的电压降不适合小型化的植入物。介绍了一种用于治疗运动神经元疾病的光电刺激器的集成电源管理单元(PMU)。它包括一个具有新型体偏高速比较器的节能调节整流器,为刺激器的操作提供3.3 V,一个3级锁存电荷泵,输出12 V用于光电刺激器的输入级,1.8 V用于数字控制逻辑。该芯片采用$0.18 ~\mu \text{m}$ CMOS工艺制作。测量结果表明,在3.3 V稳压输出输出30.3 mW功率时,感应链路可调谐频率为6.78 MHz时的峰值功率转换效率为84.2%,在13.56 MHz时降至70.3%。片上电容电荷泵的电压转换效率为90.9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
19 weeks
期刊最新文献
Energy Consumption Modeling of 2-D and 3-D Decoder Circuits 2024 Index IEEE Open Journal of Circuits and Systems Vol. 5 IEEE Circuits and Systems Society Front Cover Analysis and Verilog-A Modeling of Floating-Gate Transistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1