Imitation System of Humanoid Robots and Its Applications

IF 2.4 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE open journal of circuits and systems Pub Date : 2023-01-01 DOI:10.1109/OJCAS.2022.3231097
Ze-Feng Zhan;Han-Pang Huang
{"title":"Imitation System of Humanoid Robots and Its Applications","authors":"Ze-Feng Zhan;Han-Pang Huang","doi":"10.1109/OJCAS.2022.3231097","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an imitation system that imitates human motions in videos to plan robot actions that are similar to human motions, with the aim of the complicated whole-body action planning of humanoid robots. Additionally, we created an interaction system that will enable basic human-robot interaction for our humanoid robot. To obtain the 3D coordinates of the key points on the human body, we used the 3D pose estimation model. The key points were then transformed into various trajectory files needed by the robot to complete the motion, using the mapping method proposed in this research, which refers to the control strategy and stability of the robot. In addition, we proposed some post-processing methods to post-process the trajectories. In the interaction system, we created a speech and vision system so that the robot could detect human gestures or postures and converse with people. It also has a music rhythm recognition system developed by seniors that enables the robot to dance to the beats of the song. Finally, through this system, we completed several human-robot interaction scenarios, which proved the convenience, and effectiveness of motion planning with an imitation system, and the completeness of the interaction system.","PeriodicalId":93442,"journal":{"name":"IEEE open journal of circuits and systems","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8784029/10019301/09996134.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9996134/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we propose an imitation system that imitates human motions in videos to plan robot actions that are similar to human motions, with the aim of the complicated whole-body action planning of humanoid robots. Additionally, we created an interaction system that will enable basic human-robot interaction for our humanoid robot. To obtain the 3D coordinates of the key points on the human body, we used the 3D pose estimation model. The key points were then transformed into various trajectory files needed by the robot to complete the motion, using the mapping method proposed in this research, which refers to the control strategy and stability of the robot. In addition, we proposed some post-processing methods to post-process the trajectories. In the interaction system, we created a speech and vision system so that the robot could detect human gestures or postures and converse with people. It also has a music rhythm recognition system developed by seniors that enables the robot to dance to the beats of the song. Finally, through this system, we completed several human-robot interaction scenarios, which proved the convenience, and effectiveness of motion planning with an imitation system, and the completeness of the interaction system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
仿人机器人仿真系统及其应用
本文针对类人机器人复杂的全身动作规划问题,提出了一种模仿视频中人类动作的模仿系统,以规划类似人类动作的机器人动作。此外,我们还创建了一个交互系统,使我们的人形机器人能够进行基本的人机交互。为了获得人体关键点的三维坐标,我们使用了三维姿态估计模型。然后利用本文提出的映射方法将关键点转换为机器人完成运动所需的各种轨迹文件,这涉及到机器人的控制策略和稳定性。此外,我们还提出了一些后处理方法来对轨迹进行后处理。在交互系统中,我们创建了语音和视觉系统,使机器人可以检测到人类的手势或姿势,并与人交谈。它还有一个由老年人开发的音乐节奏识别系统,使机器人能够随着歌曲的节拍跳舞。最后,通过该系统完成了几个人机交互场景,证明了用仿真系统进行运动规划的便利性、有效性和交互系统的完整性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
19 weeks
期刊最新文献
Double MAC on a Cell: A 22-nm 8T-SRAM-Based Analog In-Memory Accelerator for Binary/Ternary Neural Networks Featuring Split Wordline A Companding Technique to Reduce Peak-to-Average Ratio in Discrete Multitone Wireline Receivers Low-Power On-Chip Energy Harvesting: From Interface Circuits Perspective A 10 GHz Dual-Loop PLL With Active Cycle-Jitter Correction Achieving 12dB Spur and 29% Jitter Reduction A 45Gb/s Analog Multi-Tone Receiver Utilizing a 6-Tap MIMO-FFE in 22nm FDSOI
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1