Reversible Gates: A Paradigm Shift in Computing

IF 2.4 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE open journal of circuits and systems Pub Date : 2023-01-01 DOI:10.1109/OJCAS.2023.3305557
Syed Farah Naz;Ambika Prasad Shah
{"title":"Reversible Gates: A Paradigm Shift in Computing","authors":"Syed Farah Naz;Ambika Prasad Shah","doi":"10.1109/OJCAS.2023.3305557","DOIUrl":null,"url":null,"abstract":"The reversible gate has been one of the emerging research areas that ensure a continual process of innovation trends that explore and utilizes the resources. This review paper provides a comprehensive overview of reversible gates, including their fundamental principles, design methodologies, and various applications. It also analyzes the reversible gates, comparing them based on metrics such as Quantum Cost, Complexity, and other performance evaluation measures. The analysis of several reversible gates is presented in this paper and provides a comprehensive overview of reversible gates, encompassing their fundamental principles, design methodologies, and diverse applications. Reversible logic circuits allow for the production of both unique outputs and distinct input combinations. The majority of the findings about the reversible gates from previous research papers are discussed and contrasted. All the reversible gates that have been proposed till now are presented in tabular form and the parameters are discussed to help the researchers to find every detail related to the reversible gates. To highlight our understanding, we have ended most of the sections with questions. The inclusion of questions is likely intended to stimulate further discussion and promote a deeper understanding of the material presented in this paper. These questions can serve as prompts for readers to reflect on the content and potentially explore related research directions or areas of improvement.","PeriodicalId":93442,"journal":{"name":"IEEE open journal of circuits and systems","volume":"4 ","pages":"241-257"},"PeriodicalIF":2.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8784029/10019301/10218349.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10218349/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

Abstract

The reversible gate has been one of the emerging research areas that ensure a continual process of innovation trends that explore and utilizes the resources. This review paper provides a comprehensive overview of reversible gates, including their fundamental principles, design methodologies, and various applications. It also analyzes the reversible gates, comparing them based on metrics such as Quantum Cost, Complexity, and other performance evaluation measures. The analysis of several reversible gates is presented in this paper and provides a comprehensive overview of reversible gates, encompassing their fundamental principles, design methodologies, and diverse applications. Reversible logic circuits allow for the production of both unique outputs and distinct input combinations. The majority of the findings about the reversible gates from previous research papers are discussed and contrasted. All the reversible gates that have been proposed till now are presented in tabular form and the parameters are discussed to help the researchers to find every detail related to the reversible gates. To highlight our understanding, we have ended most of the sections with questions. The inclusion of questions is likely intended to stimulate further discussion and promote a deeper understanding of the material presented in this paper. These questions can serve as prompts for readers to reflect on the content and potentially explore related research directions or areas of improvement.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可逆门:计算中的范式转变
可逆门是一个新兴的研究领域,它保证了不断探索和利用资源的创新趋势。本文提供了可逆门的全面概述,包括其基本原理,设计方法和各种应用。本文还分析了可逆门,根据量子成本、复杂性和其他性能评估指标对它们进行比较。本文介绍了几种可逆门的分析,并提供了可逆门的全面概述,包括其基本原理,设计方法和各种应用。可逆逻辑电路允许产生唯一的输出和不同的输入组合。本文讨论和比较了前人关于可逆门的研究成果。将目前提出的所有可逆门以表格的形式呈现出来,并对其参数进行了讨论,以帮助研究人员找到与可逆门相关的每一个细节。为了强调我们的理解,我们以问题结束了大部分章节。包含问题可能是为了激发进一步的讨论,并促进对本文中所呈现的材料的更深层次的理解。这些问题可以作为读者反思内容的提示,并潜在地探索相关的研究方向或改进领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
19 weeks
期刊最新文献
Energy Consumption Modeling of 2-D and 3-D Decoder Circuits 2024 Index IEEE Open Journal of Circuits and Systems Vol. 5 IEEE Circuits and Systems Society Front Cover Analysis and Verilog-A Modeling of Floating-Gate Transistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1