A method based on link prediction for identifying set of super-spreaders in complex networks

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2023-02-01 DOI:10.1093/comnet/cnad007
Bayan Hosseini;Farshid Veisi;Amir Sheikhahmdi
{"title":"A method based on link prediction for identifying set of super-spreaders in complex networks","authors":"Bayan Hosseini;Farshid Veisi;Amir Sheikhahmdi","doi":"10.1093/comnet/cnad007","DOIUrl":null,"url":null,"abstract":"Identifying a group of key nodes with enormous capability for spreading information to other network nodes is one of the favourable research topics in complex networks. In most existing methods, only the current status of the network is used for identifying and selecting the member of these groups. The main weakness of these methods is a lack of attention to the highly dynamic nature of complex networks and continuous changes in them in terms of creating and eliminating nodes and links. This matter makes the selected group have no proper performance in spreading information relative to other nodes. Therefore, this article presents a novel method for identifying spreader nodes and selecting a superior set from them. In the proposed method, the diffusion power of network nodes is calculated in the first step, and some are selected as influential nodes. In the following steps, it is tried to modify the list of selected nodes by predicting the network variation. Six datasets gathered from real-world networks are utilized for evaluation. The proposed method and other methods are tested to evaluate their spread of influence and time complexity. Results show that using the link prediction in the proposed method can enhance the spread of influence by the selected set compared to other methods so that the spread of influence in some datasets is more than 30\n<tex>$\\%$</tex>\n. On the other hand, the time complexity of the proposed method confirms its utility in very large networks.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://ieeexplore.ieee.org/document/10075380/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1

Abstract

Identifying a group of key nodes with enormous capability for spreading information to other network nodes is one of the favourable research topics in complex networks. In most existing methods, only the current status of the network is used for identifying and selecting the member of these groups. The main weakness of these methods is a lack of attention to the highly dynamic nature of complex networks and continuous changes in them in terms of creating and eliminating nodes and links. This matter makes the selected group have no proper performance in spreading information relative to other nodes. Therefore, this article presents a novel method for identifying spreader nodes and selecting a superior set from them. In the proposed method, the diffusion power of network nodes is calculated in the first step, and some are selected as influential nodes. In the following steps, it is tried to modify the list of selected nodes by predicting the network variation. Six datasets gathered from real-world networks are utilized for evaluation. The proposed method and other methods are tested to evaluate their spread of influence and time complexity. Results show that using the link prediction in the proposed method can enhance the spread of influence by the selected set compared to other methods so that the spread of influence in some datasets is more than 30 $\%$ . On the other hand, the time complexity of the proposed method confirms its utility in very large networks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于链路预测的复杂网络超传播者集识别方法
在复杂网络中,识别一组具有向其他网络节点传播信息能力的关键节点是一个重要的研究课题。在大多数现有方法中,仅使用网络的当前状态来识别和选择这些组的成员。这些方法的主要缺点是缺乏对复杂网络的高度动态性以及它们在创建和消除节点和链接方面的持续变化的关注。这一问题使得所选组相对于其他节点的信息传播性能不佳。因此,本文提出了一种识别扩散节点并从中选择优集的新方法。在该方法中,首先计算网络节点的扩散能力,并选择一些有影响的节点。在接下来的步骤中,尝试通过预测网络变化来修改所选节点的列表。从现实世界的网络中收集的六个数据集被用于评估。对该方法和其他方法进行了测试,以评估其影响范围和时间复杂度。结果表明,与其他方法相比,该方法中使用链接预测可以增强所选数据集的影响力传播,某些数据集的影响力传播超过30 %。另一方面,该方法的时间复杂度证实了它在非常大的网络中的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1