Individual-based models of contagious processes are useful for predicting epidemic trajectories and informing intervention strategies. In such models, the incorporation of contact network information can capture the non-randomness and heterogeneity of realistic contact dynamics. In this article, we consider Bayesian inference on the spreading parameters of an SIR contagion on a known, static network, where information regarding individual disease status is known only from a series of tests (positive or negative disease status). When the contagion model is complex or information such as infection and removal times is missing, the posterior distribution can be difficult to sample from. Previous work has considered the use of Approximate Bayesian Computation (ABC), which allows for simulation-based Bayesian inference on complex models. However, ABC methods usually require the user to select reasonable summary statistics. Here, we consider an inference scheme based on the Mixture Density Network compressed ABC, which minimizes the expected posterior entropy in order to learn informative summary statistics. This allows us to conduct Bayesian inference on the parameters of a partially observed contagious process while also circumventing the need for manual summary statistic selection. This methodology can be extended to incorporate additional simulation complexities, including behavioural change after positive tests or false test results.
There are two prominent paradigms for the modelling of networks: in the first, referred to as the mechanistic approach, one specifies a set of domain-specific mechanistic rules that are used to grow or evolve the network over time; in the second, referred to as the probabilistic approach, one describes a model that specifies the likelihood of observing a given network. Mechanistic models (models developed based on the mechanistic approach) are appealing because they capture scientific processes that are believed to be responsible for network generation; however, they do not easily lend themselves to the use of inferential techniques when compared with probabilistic models. We introduce a general framework for converting a mechanistic network model (MNM) to a probabilistic network model (PNM). The proposed framework makes it possible to identify the essential network properties and their joint probability distribution for some MNMs; doing so makes it possible to address questions such as whether two different mechanistic models generate networks with identical distributions of properties, or whether a network property, such as clustering, is over- or under-represented in the networks generated by the model of interest compared with a reference model. The proposed framework is intended to bridge some of the gap that currently exists between the formulation and representation of mechanistic and PNMs. We also highlight limitations of PNMs that need to be addressed in order to close this gap.