Miguel E P Silva;Robert E Gaunt;Luis Ospina-Forero;Caroline Jay;Thomas House
{"title":"Comparing directed networks via denoising graphlet distributions","authors":"Miguel E P Silva;Robert E Gaunt;Luis Ospina-Forero;Caroline Jay;Thomas House","doi":"10.1093/comnet/cnad006","DOIUrl":null,"url":null,"abstract":"Network comparison is a widely used tool for analysing complex systems, with applications in varied domains including comparison of protein interactions or highlighting changes in structure of trade networks. In recent years, a number of network comparison methodologies based on the distribution of graphlets (small connected network subgraphs) have been introduced. In particular, NetEmd has recently achieved state of the art performance in undirected networks. In this work, we propose an extension of NetEmd to directed networks and deal with the significant increase in complexity of graphlet structure in the directed case by denoising through linear projections. Simulation results show that our framework is able to improve on the performance of a simple translation of the undirected NetEmd algorithm to the directed case, especially when networks differ in size and density.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://ieeexplore.ieee.org/document/10075379/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 2
Abstract
Network comparison is a widely used tool for analysing complex systems, with applications in varied domains including comparison of protein interactions or highlighting changes in structure of trade networks. In recent years, a number of network comparison methodologies based on the distribution of graphlets (small connected network subgraphs) have been introduced. In particular, NetEmd has recently achieved state of the art performance in undirected networks. In this work, we propose an extension of NetEmd to directed networks and deal with the significant increase in complexity of graphlet structure in the directed case by denoising through linear projections. Simulation results show that our framework is able to improve on the performance of a simple translation of the undirected NetEmd algorithm to the directed case, especially when networks differ in size and density.