Community detection and reciprocity in networks by jointly modelling pairs of edges

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2022-07-01 DOI:10.1093/comnet/cnac034
Martina Contisciani;Hadiseh Safdari;Caterina De Bacco
{"title":"Community detection and reciprocity in networks by jointly modelling pairs of edges","authors":"Martina Contisciani;Hadiseh Safdari;Caterina De Bacco","doi":"10.1093/comnet/cnac034","DOIUrl":null,"url":null,"abstract":"To unravel the driving patterns of networks, the most popular models rely on community detection algorithms. However, these approaches are generally unable to reproduce the structural features of the network. Therefore, attempts are always made to develop models that incorporate these network properties beside the community structure. In this article, we present a probabilistic generative model and an efficient algorithm to both perform community detection and capture reciprocity in networks. Our approach jointly models pairs of edges with exact two-edge joint distributions. In addition, it provides closed-form analytical expressions for both marginal and conditional distributions. We validate our model on synthetic data in recovering communities, edge prediction tasks and generating synthetic networks that replicate the reciprocity values observed in real networks. We also highlight these findings on two real datasets that are relevant for social scientists and behavioural ecologists. Our method overcomes the limitations of both standard algorithms and recent models that incorporate reciprocity through a pseudo-likelihood approximation. The inference of the model parameters is implemented by the efficient and scalable expectation–maximization algorithm, as it exploits the sparsity of the dataset. We provide an open-source implementation of the code online.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8016804/10070447/10070458.pdf","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://ieeexplore.ieee.org/document/10070458/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 11

Abstract

To unravel the driving patterns of networks, the most popular models rely on community detection algorithms. However, these approaches are generally unable to reproduce the structural features of the network. Therefore, attempts are always made to develop models that incorporate these network properties beside the community structure. In this article, we present a probabilistic generative model and an efficient algorithm to both perform community detection and capture reciprocity in networks. Our approach jointly models pairs of edges with exact two-edge joint distributions. In addition, it provides closed-form analytical expressions for both marginal and conditional distributions. We validate our model on synthetic data in recovering communities, edge prediction tasks and generating synthetic networks that replicate the reciprocity values observed in real networks. We also highlight these findings on two real datasets that are relevant for social scientists and behavioural ecologists. Our method overcomes the limitations of both standard algorithms and recent models that incorporate reciprocity through a pseudo-likelihood approximation. The inference of the model parameters is implemented by the efficient and scalable expectation–maximization algorithm, as it exploits the sparsity of the dataset. We provide an open-source implementation of the code online.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于边对联合建模的网络社区检测与互易性研究
为了解开网络的驱动模式,最流行的模型依赖于社区检测算法。然而,这些方法通常无法再现网络的结构特征。因此,人们总是试图开发在社区结构之外包含这些网络属性的模型。在本文中,我们提出了一个概率生成模型和一个有效的算法来执行网络中的社区检测和捕获互易性。我们的方法联合建模具有精确两个边联合分布的边对。此外,它还为边际分布和条件分布提供了闭合形式的分析表达式。我们在恢复社区、边缘预测任务和生成复制真实网络中观察到的互易值的合成网络的合成数据上验证了我们的模型。我们还在两个与社会科学家和行为生态学家相关的真实数据集上强调了这些发现。我们的方法克服了标准算法和最近通过伪似然近似结合互易性的模型的局限性。模型参数的推断是通过高效且可扩展的期望最大化算法实现的,因为它利用了数据集的稀疏性。我们在线提供代码的开源实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1