Control-Centric Living Laboratory for Management of Distributed Energy Resources

IF 3.3 Q3 ENERGY & FUELS IEEE Open Access Journal of Power and Energy Pub Date : 2023-01-01 DOI:10.1109/OAJPE.2022.3223656
Roshan L. Kini;David Raker;Roan Martin-Hayden;Robert G. Lutes;Srinivas Katipamula;Randy Ellingson;Michael J. Heben;Raghav Khanna
{"title":"Control-Centric Living Laboratory for Management of Distributed Energy Resources","authors":"Roshan L. Kini;David Raker;Roan Martin-Hayden;Robert G. Lutes;Srinivas Katipamula;Randy Ellingson;Michael J. Heben;Raghav Khanna","doi":"10.1109/OAJPE.2022.3223656","DOIUrl":null,"url":null,"abstract":"Variability and uncertainty of renewable distributed generation increase power grid complexity, necessitating the development of advanced control strategies. demonstrates a real-world testbed and the implementation of control strategies on it to mitigate the challenges associated with variability and uncertainty of renewable distributed generation. This control-centric testbed includes 4.6 MW of controllable building loads, a 1 MW solar array, and a 125 kW / 130 kWh battery energy storage system (BESS). The capabilities of the testbed are illustrated by highlighting the implementation of three specific scenarios relevant to future smart grid infrastructures. In the first scenario, photovoltaic output variability is mitigated with the BESS using adaptive moving average and adaptive state of charge control methods. The second and third scenarios demonstrate peak load management and load following control to manage uncertainty using the Intelligent Load Control (ILC) algorithm. The ILC modifies controllable loads using a prioritization matrix and an analytical hierarchy process. The three scenarios all operate at a different time-constant, and are each effectively addressed, demonstrating the versatility and flexibility of the presented testbed. This demonstrated ability to rapidly test the efficacy of alternate control algorithms on a real system is crucial to the maturation of future smart-grid.","PeriodicalId":56187,"journal":{"name":"IEEE Open Access Journal of Power and Energy","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8784343/9999142/09956809.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Access Journal of Power and Energy","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9956809/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 1

Abstract

Variability and uncertainty of renewable distributed generation increase power grid complexity, necessitating the development of advanced control strategies. demonstrates a real-world testbed and the implementation of control strategies on it to mitigate the challenges associated with variability and uncertainty of renewable distributed generation. This control-centric testbed includes 4.6 MW of controllable building loads, a 1 MW solar array, and a 125 kW / 130 kWh battery energy storage system (BESS). The capabilities of the testbed are illustrated by highlighting the implementation of three specific scenarios relevant to future smart grid infrastructures. In the first scenario, photovoltaic output variability is mitigated with the BESS using adaptive moving average and adaptive state of charge control methods. The second and third scenarios demonstrate peak load management and load following control to manage uncertainty using the Intelligent Load Control (ILC) algorithm. The ILC modifies controllable loads using a prioritization matrix and an analytical hierarchy process. The three scenarios all operate at a different time-constant, and are each effectively addressed, demonstrating the versatility and flexibility of the presented testbed. This demonstrated ability to rapidly test the efficacy of alternate control algorithms on a real system is crucial to the maturation of future smart-grid.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
以控制为中心的分布式能源管理生活实验室
可再生分布式发电的可变性和不确定性增加了电网的复杂性,需要开发先进的控制策略。演示了一个真实的测试平台和控制策略的实施,以减轻可再生分布式发电的可变性和不确定性带来的挑战。这个以控制为中心的试验台包括4.6兆瓦的可控建筑负荷、1兆瓦的太阳能阵列和125千瓦/ 130千瓦时的电池储能系统(BESS)。通过强调与未来智能电网基础设施相关的三个特定场景的实现,说明了测试平台的功能。在第一种情况下,BESS使用自适应移动平均和自适应电荷状态控制方法来减轻光伏输出的可变性。第二个和第三个场景演示了峰值负载管理和负载跟随控制,以使用智能负载控制(ILC)算法管理不确定性。ILC采用优先级矩阵和层次分析法对可控负载进行修改。这三个场景都在不同的时间常数下运行,并且每个场景都得到了有效的处理,展示了所提出的测试平台的多功能性和灵活性。这种在实际系统上快速测试替代控制算法有效性的能力对未来智能电网的成熟至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.80
自引率
5.30%
发文量
45
审稿时长
10 weeks
期刊最新文献
A Novel Dual-Rotor Homopolar AC Machine Learning Power Systems Waveform Incipient Patterns Through Few-Shot Meta-Learning Data Driven Real-Time Dynamic Voltage Control Using Decentralized Execution Multi-Agent Deep Reinforcement Learning Global Research Priorities for Holistic Integration of Water and Power Systems Floating Neutral Detection Using Actual Generation of Form 2S Meters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1