Performance Evaluation of Data Enhancement Methods in SAR Ship Detection

Chi Zhang;Xi Zhang;Jie Zhang;Gui Gao;Jingke Zhang;Genwang Liu;Yongjun Jia;Xiaochen Wang;Yi Zhang;Yongshou Dai
{"title":"Performance Evaluation of Data Enhancement Methods in SAR Ship Detection","authors":"Chi Zhang;Xi Zhang;Jie Zhang;Gui Gao;Jingke Zhang;Genwang Liu;Yongjun Jia;Xiaochen Wang;Yi Zhang;Yongshou Dai","doi":"10.1109/JMASS.2022.3211256","DOIUrl":null,"url":null,"abstract":"In recent years, researchers have started to apply neural networks to ship detection of synthetic aperture radar (SAR). However, SAR images are difficult to acquire and interpret manually. Sufficient training samples cannot be obtained, which limits the performance of ship detection. Therefore, data enhancement has become an active means to handle the issue of insufficient samples. To evaluate the performance of diverse data enhancement methods, a variety of data enhancement methods is used to expand the ship samples in the SAR ship detection dataset, including rotation, shift, mirror, brightening, etc. Moreover, we used the combination of diverse data enhancement methods for experiments. Experiments were performed using the SSDD dataset. Based on the experimental results, we analyze the characteristics of diverse data enhancement methods.","PeriodicalId":100624,"journal":{"name":"IEEE Journal on Miniaturization for Air and Space Systems","volume":"3 4","pages":"249-255"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Miniaturization for Air and Space Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9908157/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In recent years, researchers have started to apply neural networks to ship detection of synthetic aperture radar (SAR). However, SAR images are difficult to acquire and interpret manually. Sufficient training samples cannot be obtained, which limits the performance of ship detection. Therefore, data enhancement has become an active means to handle the issue of insufficient samples. To evaluate the performance of diverse data enhancement methods, a variety of data enhancement methods is used to expand the ship samples in the SAR ship detection dataset, including rotation, shift, mirror, brightening, etc. Moreover, we used the combination of diverse data enhancement methods for experiments. Experiments were performed using the SSDD dataset. Based on the experimental results, we analyze the characteristics of diverse data enhancement methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SAR舰船探测中数据增强方法的性能评价
近年来,研究人员开始将神经网络应用于合成孔径雷达(SAR)的船舶检测。然而,人工获取和解释SAR图像是困难的。由于无法获得足够的训练样本,限制了船舶检测的性能。因此,数据增强成为解决样本不足问题的一种积极手段。为了评估不同数据增强方法的性能,采用多种数据增强方法对SAR船舶检测数据集中的船舶样本进行扩展,包括旋转、移位、镜像、增亮等。此外,我们采用了多种数据增强方法的组合进行实验。实验使用SSDD数据集进行。在实验结果的基础上,分析了各种数据增强方法的特点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.40
自引率
0.00%
发文量
0
期刊最新文献
2024 Index IEEE Journal on Miniaturization for Air and Space Systems Vol. 5 Table of Contents Front Cover The Journal of Miniaturized Air and Space Systems Broadband Miniaturized Antenna Based on Enhanced Magnetic Field Convergence in UAV
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1