Sleimane Nasser El Dine;Xavier Mininger;Caroline Nore
{"title":"Heat Transfer in a Ferrofluid-Based Transformer: Multiphysics Modeling Using the Finite Element Method","authors":"Sleimane Nasser El Dine;Xavier Mininger;Caroline Nore","doi":"10.1109/JMMCT.2022.3200019","DOIUrl":null,"url":null,"abstract":"This paper deals with a thermal-fluid-magnetic analysis based on the 3D finite element method to study the cooling efficiency inside a ferrofluid-based transformer. This cooling approach is first tested, both experimentally and numerically, on an axisymmetric coil. After cross-validation of the numerical and experimental results, a 400/230V transformer with a non-axisymmetric ferromagnetic core is modeled. The device is immersed in a steel tank filled with cobalt ferrite nanoparticles-based Midel vegetable oil. The time evolution of the temperature is recorded whether the Helmholtz magnetic force is activated or not. A decrease in the local temperature of the coil sensors by about 10 K is observed when the impact of the magnetic force is considered. Numerical results prove the beneficial effect of thermomagnetic convection on transformer cooling.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":"7 ","pages":"207-219"},"PeriodicalIF":1.8000,"publicationDate":"2022-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9863649/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper deals with a thermal-fluid-magnetic analysis based on the 3D finite element method to study the cooling efficiency inside a ferrofluid-based transformer. This cooling approach is first tested, both experimentally and numerically, on an axisymmetric coil. After cross-validation of the numerical and experimental results, a 400/230V transformer with a non-axisymmetric ferromagnetic core is modeled. The device is immersed in a steel tank filled with cobalt ferrite nanoparticles-based Midel vegetable oil. The time evolution of the temperature is recorded whether the Helmholtz magnetic force is activated or not. A decrease in the local temperature of the coil sensors by about 10 K is observed when the impact of the magnetic force is considered. Numerical results prove the beneficial effect of thermomagnetic convection on transformer cooling.