Vulnerability in Free Space QKD Due to Detection Coupling Mismatch

IF 2.2 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Journal of Quantum Electronics Pub Date : 2023-09-25 DOI:10.1109/JQE.2023.3318585
Tanya Sharma;Ayan Biswas;Pooja Chandravanshi;Shashi Prabhakar;Ravindra P. Singh
{"title":"Vulnerability in Free Space QKD Due to Detection Coupling Mismatch","authors":"Tanya Sharma;Ayan Biswas;Pooja Chandravanshi;Shashi Prabhakar;Ravindra P. Singh","doi":"10.1109/JQE.2023.3318585","DOIUrl":null,"url":null,"abstract":"Practical implementations of QKD protocols involve devices which are not perfect, and an eavesdropper may exploit this to gain information leading to attacks. Here we have considered the effects of coupling mismatch between the detectors. We find possible information leakage to Eve due to coupling mismatch at the receiver’s detectors in terms of mutual information between the eavesdropper and receiver. The experiment has been performed for the Gaussian and Laguerre-Gaussian modes of the signal. This aspect becomes essential while implementing free space QKD using a satellite. The results suggest that accounting for detection coupling mismatch is crucial to avoid side-channel attacks.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10262004/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Practical implementations of QKD protocols involve devices which are not perfect, and an eavesdropper may exploit this to gain information leading to attacks. Here we have considered the effects of coupling mismatch between the detectors. We find possible information leakage to Eve due to coupling mismatch at the receiver’s detectors in terms of mutual information between the eavesdropper and receiver. The experiment has been performed for the Gaussian and Laguerre-Gaussian modes of the signal. This aspect becomes essential while implementing free space QKD using a satellite. The results suggest that accounting for detection coupling mismatch is crucial to avoid side-channel attacks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
空闲空间QKD检测耦合失配漏洞研究
QKD协议的实际实现涉及不完美的设备,窃听者可能会利用这些设备获取导致攻击的信息。在这里,我们已经考虑了探测器之间耦合失配的影响。我们发现,根据窃听者和接收器之间的相互信息,由于接收器检测器的耦合失配,可能会向Eve泄漏信息。实验是针对信号的高斯和拉盖尔-高斯模式进行的。在使用卫星实施自由空间QKD时,这一方面变得至关重要。结果表明,考虑检测耦合失配对于避免侧信道攻击至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Journal of Quantum Electronics
IEEE Journal of Quantum Electronics 工程技术-工程:电子与电气
CiteScore
4.70
自引率
4.00%
发文量
99
审稿时长
3.0 months
期刊介绍: The IEEE Journal of Quantum Electronics is dedicated to the publication of manuscripts reporting novel experimental or theoretical results in the broad field of the science and technology of quantum electronics. The Journal comprises original contributions, both regular papers and letters, describing significant advances in the understanding of quantum electronics phenomena or the demonstration of new devices, systems, or applications. Manuscripts reporting new developments in systems and applications must emphasize quantum electronics principles or devices. The scope of JQE encompasses the generation, propagation, detection, and application of coherent electromagnetic radiation having wavelengths below one millimeter (i.e., in the submillimeter, infrared, visible, ultraviolet, etc., regions). Whether the focus of a manuscript is a quantum-electronic device or phenomenon, the critical factor in the editorial review of a manuscript is the potential impact of the results presented on continuing research in the field or on advancing the technological base of quantum electronics.
期刊最新文献
Mode-Locking and Q-switching in Holmium Doped Fiber Laser Using Topological Insulator (Sb2Te3) as Saturable Absorber Frequency Modulation Nonlinear Correction and Ranging in FMCW LiDAR Phase Shifts in Gain-Switched Semiconductor Laser Subharmonic Pulse Trains All-optical General RS Flip-flop and Clocked RS Flip-flop Based on Cascaded PPLN Waveguides High-Performance Very Long Wave Infrared Quantum Cascade Detector Grown by MOCVD
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1