Strain-minimizing hyperbolic network embeddings with landmarks

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2023-02-01 DOI:10.1093/comnet/cnad002
Martin Keller-Ressel;Stephanie Nargang
{"title":"Strain-minimizing hyperbolic network embeddings with landmarks","authors":"Martin Keller-Ressel;Stephanie Nargang","doi":"10.1093/comnet/cnad002","DOIUrl":null,"url":null,"abstract":"We introduce L-hydra (landmarked hyperbolic distance recovery and approximation), a method for embedding network- or distance-based data into hyperbolic space, which requires only the distance measurements to a few ‘landmark nodes’. This landmark heuristic makes L-hydra applicable to large-scale graphs and improves upon previously introduced methods. As a mathematical justification, we show that a point configuration in \n<tex>$d$</tex>\n-dimensional hyperbolic space can be perfectly recovered (up to isometry) from distance measurements to just \n<tex>$d+1$</tex>\n landmarks. We also show that L-hydra solves a two-stage strain-minimization problem, similar to our previous (unlandmarked) method ‘hydra’. Testing on real network data, we show that L-hydra is an order of magnitude faster than the existing hyperbolic embedding methods and scales linearly in the number of nodes. While the embedding error of L-hydra is higher than the error of the existing methods, we introduce an extension, L-hydra+, which outperforms the existing methods in both runtime and embedding quality.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://ieeexplore.ieee.org/document/10068401/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce L-hydra (landmarked hyperbolic distance recovery and approximation), a method for embedding network- or distance-based data into hyperbolic space, which requires only the distance measurements to a few ‘landmark nodes’. This landmark heuristic makes L-hydra applicable to large-scale graphs and improves upon previously introduced methods. As a mathematical justification, we show that a point configuration in $d$ -dimensional hyperbolic space can be perfectly recovered (up to isometry) from distance measurements to just $d+1$ landmarks. We also show that L-hydra solves a two-stage strain-minimization problem, similar to our previous (unlandmarked) method ‘hydra’. Testing on real network data, we show that L-hydra is an order of magnitude faster than the existing hyperbolic embedding methods and scales linearly in the number of nodes. While the embedding error of L-hydra is higher than the error of the existing methods, we introduce an extension, L-hydra+, which outperforms the existing methods in both runtime and embedding quality.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带地标的应变最小化双曲网络嵌入
我们介绍了L-hydra(地标双曲距离恢复和近似),这是一种将基于网络或距离的数据嵌入到双曲空间的方法,它只需要到几个“地标节点”的距离测量。这种具有里程碑意义的启发式方法使L-hydra适用于大规模图,并改进了以前介绍的方法。作为数学证明,我们证明了d维双曲空间中的点构型可以从距离测量完全恢复(直到等距)到仅d+1个地标。我们还表明,L-hydra解决了一个两阶段的应变最小化问题,类似于我们之前的(未标记的)方法' hydra '。在实际网络数据上的测试表明,L-hydra比现有的双曲嵌入方法快一个数量级,并且在节点数量上呈线性扩展。虽然L-hydra的嵌入误差高于现有方法,但我们引入了一个扩展,L-hydra+,在运行时间和嵌入质量上都优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1