Electromagnetic Field Reconstruction and Source Identification Using Conditional Variational Autoencoder and CNN

IF 1.8 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Journal on Multiscale and Multiphysics Computational Techniques Pub Date : 2023-08-14 DOI:10.1109/JMMCT.2023.3304709
Sami Barmada;Paolo Di Barba;Nunzia Fontana;Maria Evelina Mognaschi;Mauro Tucci
{"title":"Electromagnetic Field Reconstruction and Source Identification Using Conditional Variational Autoencoder and CNN","authors":"Sami Barmada;Paolo Di Barba;Nunzia Fontana;Maria Evelina Mognaschi;Mauro Tucci","doi":"10.1109/JMMCT.2023.3304709","DOIUrl":null,"url":null,"abstract":"In this work, a Deep Learning approach based on a Conditional Variational Autoencoder (CVAE) and a Convolutional Neural Network (CNN) has been adopted for the solution of inverse problems and electromagnetic field reconstruction; the method is applied to the TEAM 35 benchmark magnetostatic problem. The aim of the proposed method is twofold: first, knowing the magnetic field distribution in a subdomain, the magnetic field distribution \n<inline-formula><tex-math>${\\bm{B}}$</tex-math></inline-formula>\n in the whole domain is determined (field reconstruction problem). For this problem a CVAE is proposed and trained. The CVAE prediction is based on an optimization procedure in the latent space, which uses an automatic differentiation technique. Subsequently, knowing the magnetic field distribution in the whole domain, the aim is to find, using a CNN regression model, the geometrical characteristics of the source (source identification problem).","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":"8 ","pages":"322-331"},"PeriodicalIF":1.8000,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10216359/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, a Deep Learning approach based on a Conditional Variational Autoencoder (CVAE) and a Convolutional Neural Network (CNN) has been adopted for the solution of inverse problems and electromagnetic field reconstruction; the method is applied to the TEAM 35 benchmark magnetostatic problem. The aim of the proposed method is twofold: first, knowing the magnetic field distribution in a subdomain, the magnetic field distribution ${\bm{B}}$ in the whole domain is determined (field reconstruction problem). For this problem a CVAE is proposed and trained. The CVAE prediction is based on an optimization procedure in the latent space, which uses an automatic differentiation technique. Subsequently, knowing the magnetic field distribution in the whole domain, the aim is to find, using a CNN regression model, the geometrical characteristics of the source (source identification problem).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于条件变分自编码器和CNN的电磁场重建与源识别
在这项工作中,基于条件变分自编码器(CVAE)和卷积神经网络(CNN)的深度学习方法被用于求解反问题和电磁场重建;将该方法应用于team35基准静磁问题。该方法的目的有两个:首先,知道子域的磁场分布,确定整个域的磁场分布${\bm{B}}$(磁场重建问题)。针对这一问题,提出并训练了CVAE。CVAE预测基于潜在空间的优化过程,该过程采用自动微分技术。随后,知道整个域的磁场分布,目的是利用CNN回归模型找到源的几何特征(源识别问题)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
27
期刊最新文献
Experimental and Numerical Modeling of Magnetic Drug Targeting: Can We Trust Particle-Based Models? Table of Contents Editorial Rigorous Indoor Wireless Communication System Simulations With Deep Learning-Based Radio Propagation Models Transfer Learning Based Rapid Design of Frequency and Dielectric Agile Antennas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1