Detecting Resonance of Radio-Frequency Cavities Using Fast Direct Integral Equation Solvers and Augmented Bayesian Optimization

IF 1.8 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Journal on Multiscale and Multiphysics Computational Techniques Pub Date : 2023-09-04 DOI:10.1109/JMMCT.2023.3311322
Yang Liu;Tianhuan Luo;Aman Rani;Hengrui Luo;Xiaoye Sherry Li
{"title":"Detecting Resonance of Radio-Frequency Cavities Using Fast Direct Integral Equation Solvers and Augmented Bayesian Optimization","authors":"Yang Liu;Tianhuan Luo;Aman Rani;Hengrui Luo;Xiaoye Sherry Li","doi":"10.1109/JMMCT.2023.3311322","DOIUrl":null,"url":null,"abstract":"This article presents a computationally efficient framework for identifying resonance modes of 3D radio-frequency (RF) cavities with damping waveguide ports. The proposed framework relies on surface integral equation (IE) formulations to convert the task of resonance detection to the task of finding frequencies at which the lowest few eigenvalues of the system matrix is close to zero. For the linear eigenvalue problem with a fixed frequency, we propose leveraging fast direct solvers to efficiently invert the system matrix; for the frequency search problem, we develop a hybrid optimization algorithm that combines Bayesian optimization with down-hill simplex optimization. The proposed IE-based resonance detection framework (IERD) has been applied to detection of high-order resonance modes (HOMs) of realistic accelerator RF cavities to demonstrate its efficiency and accuracy.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":"8 ","pages":"361-371"},"PeriodicalIF":1.8000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10238712/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents a computationally efficient framework for identifying resonance modes of 3D radio-frequency (RF) cavities with damping waveguide ports. The proposed framework relies on surface integral equation (IE) formulations to convert the task of resonance detection to the task of finding frequencies at which the lowest few eigenvalues of the system matrix is close to zero. For the linear eigenvalue problem with a fixed frequency, we propose leveraging fast direct solvers to efficiently invert the system matrix; for the frequency search problem, we develop a hybrid optimization algorithm that combines Bayesian optimization with down-hill simplex optimization. The proposed IE-based resonance detection framework (IERD) has been applied to detection of high-order resonance modes (HOMs) of realistic accelerator RF cavities to demonstrate its efficiency and accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于快速直接积分方程求解和增广贝叶斯优化的射频腔谐振检测
本文提出了一个计算高效的框架,用于识别具有阻尼波导端口的三维射频(RF)腔的谐振模式。所提出的框架依赖于表面积分方程(IE)公式,将谐振检测任务转换为寻找系统矩阵的最低几个特征值接近零的频率的任务。对于固定频率的线性特征值问题,我们提出利用快速直接求解器来有效地反演系统矩阵;对于频率搜索问题,我们开发了一种混合优化算法,该算法将贝叶斯优化与下坡单纯形优化相结合。所提出的基于IE的谐振检测框架(IERD)已应用于现实加速器RF腔的高阶谐振模式(HOM)的检测,以证明其有效性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
27
期刊最新文献
Experimental and Numerical Modeling of Magnetic Drug Targeting: Can We Trust Particle-Based Models? Table of Contents Editorial Rigorous Indoor Wireless Communication System Simulations With Deep Learning-Based Radio Propagation Models Transfer Learning Based Rapid Design of Frequency and Dielectric Agile Antennas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1