Lorentz-Invariant Meshless Vector Basis Function for Translational Motion of Coordinates in Computational Electromagnetics

IF 1.8 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Journal on Multiscale and Multiphysics Computational Techniques Pub Date : 2023-08-09 DOI:10.1109/JMMCT.2023.3303813
Arman Afsari;Paulo de Souza;Amin Abbosh;Yahya Rahmat-Samii
{"title":"Lorentz-Invariant Meshless Vector Basis Function for Translational Motion of Coordinates in Computational Electromagnetics","authors":"Arman Afsari;Paulo de Souza;Amin Abbosh;Yahya Rahmat-Samii","doi":"10.1109/JMMCT.2023.3303813","DOIUrl":null,"url":null,"abstract":"Laws of physics remain unchanged under translational motion of coordinates. To guarantee the above postulate in electromagnetics, Lorenz gauge eliminates the additional terms generated in the wave equation of magnetic vector potential during translational motion. When it comes to computational electromagnetics, nonetheless, Coulomb gauge is still preferred to represent the divergence of the magnetic vector potential; the vector basis functions involved in the computation of magnetic vector potential are thus divergence-free. There is, however, an immediate consequence that we shall consider here. These vector basis functions cannot incorporate any kinematic transformation of the system of coordinates. The solution achieved by them is, therefore, invalid under translational motion of the system of coordinates as a whole. Less attention has been paid to this side of computational electromagnetics, as the problems that we solve do not usually undergo any kinematic transformation. The new meshless vector basis function presented in this article is Lorentz-invariant. The solution achieved by it is, therefore, valid under translational motion. Even in local problems, the solution achieved by the newly-introduced Lorentz-invariant vector basis function demonstrates more accuracy and efficiency with respect to the solution achieved by the divergence-free vector basis functions in meshless method.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":"8 ","pages":"281-295"},"PeriodicalIF":1.8000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10214064/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Laws of physics remain unchanged under translational motion of coordinates. To guarantee the above postulate in electromagnetics, Lorenz gauge eliminates the additional terms generated in the wave equation of magnetic vector potential during translational motion. When it comes to computational electromagnetics, nonetheless, Coulomb gauge is still preferred to represent the divergence of the magnetic vector potential; the vector basis functions involved in the computation of magnetic vector potential are thus divergence-free. There is, however, an immediate consequence that we shall consider here. These vector basis functions cannot incorporate any kinematic transformation of the system of coordinates. The solution achieved by them is, therefore, invalid under translational motion of the system of coordinates as a whole. Less attention has been paid to this side of computational electromagnetics, as the problems that we solve do not usually undergo any kinematic transformation. The new meshless vector basis function presented in this article is Lorentz-invariant. The solution achieved by it is, therefore, valid under translational motion. Even in local problems, the solution achieved by the newly-introduced Lorentz-invariant vector basis function demonstrates more accuracy and efficiency with respect to the solution achieved by the divergence-free vector basis functions in meshless method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
计算电磁学中坐标平移运动的洛伦兹不变无网格向量基函数
物理定律在坐标的平移运动下保持不变。为了保证电磁学中的上述假设,洛伦兹规范消除了平移运动时磁矢量势波动方程中产生的附加项。然而,当涉及到计算电磁学时,库仑规仍然更倾向于表示磁矢量势的散度;因此,计算磁矢量势所涉及的矢量基函数是无散度的。然而,我们在这里要考虑的是一个直接的后果。这些向量基函数不能包含坐标系的任何运动变换。因此,它们所得到的解在整个坐标系的平移运动下是无效的。计算电磁学的这一方面较少受到关注,因为我们所解决的问题通常不进行任何运动变换。本文提出的新的无网格矢量基函数是洛伦兹不变的。因此,它所得到的解在平移运动下是有效的。即使在局部问题中,新引入的洛伦兹不变向量基函数的求解也比无网格法中无散度向量基函数的求解更加精确和高效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
27
期刊最新文献
Scale-Compressed Technique in Finite-Difference Time-Domain Method for Multi-Layered Anisotropic Media Experimental and Numerical Modeling of Magnetic Drug Targeting: Can We Trust Particle-Based Models? Table of Contents Editorial Rigorous Indoor Wireless Communication System Simulations With Deep Learning-Based Radio Propagation Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1