Modeling and Design for Magnetoelectric Ternary Content Addressable Memory (TCAM)

IF 2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Journal on Exploratory Solid-State Computational Devices and Circuits Pub Date : 2022-06-09 DOI:10.1109/JXCDC.2022.3181925
Siri Narla;Piyush Kumar;Ann Franchesca Laguna;Dayane Reis;X. Sharon Hu;Michael Niemier;Azad Naeemi
{"title":"Modeling and Design for Magnetoelectric Ternary Content Addressable Memory (TCAM)","authors":"Siri Narla;Piyush Kumar;Ann Franchesca Laguna;Dayane Reis;X. Sharon Hu;Michael Niemier;Azad Naeemi","doi":"10.1109/JXCDC.2022.3181925","DOIUrl":null,"url":null,"abstract":"This article proposes a novel magnetoelectric (ME) effect-based ternary content addressable memory (TCAM). The potential array-level write and search performances of the proposed ME-TCAM are studied using experimentally calibrated compact physical models and SPICE simulations. The voltage-controlled operation of the ME devices eliminates the large joule heating present in the current-controlled magnetic devices and their low-voltage write operation makes them more energy-efficient compared to static random access memory-based TCAMs (SRAM-TCAMs). The proposed compact TCAM outperforms its SRAM counterpart with \n<inline-formula> <tex-math>$1.35\\times $ </tex-math></inline-formula>\n and \n<inline-formula> <tex-math>$14.4\\times $ </tex-math></inline-formula>\n improvements in search and write energy, respectively, and its nonvolatility eliminates the standby leakage. We project an error rate below \n<inline-formula> <tex-math>$10^{-4}$ </tex-math></inline-formula>\n while considering various sources of variation in magnetic and CMOS devices. At the application level, using memory-augmented neural networks (MANNs), we project a \n<inline-formula> <tex-math>$2\\times $ </tex-math></inline-formula>\n energy-delay–area-product (EDAP) improvement over an SRAM-TCAM.","PeriodicalId":54149,"journal":{"name":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2022-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/6570653/9903013/09792464.pdf","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9792464/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 6

Abstract

This article proposes a novel magnetoelectric (ME) effect-based ternary content addressable memory (TCAM). The potential array-level write and search performances of the proposed ME-TCAM are studied using experimentally calibrated compact physical models and SPICE simulations. The voltage-controlled operation of the ME devices eliminates the large joule heating present in the current-controlled magnetic devices and their low-voltage write operation makes them more energy-efficient compared to static random access memory-based TCAMs (SRAM-TCAMs). The proposed compact TCAM outperforms its SRAM counterpart with $1.35\times $ and $14.4\times $ improvements in search and write energy, respectively, and its nonvolatility eliminates the standby leakage. We project an error rate below $10^{-4}$ while considering various sources of variation in magnetic and CMOS devices. At the application level, using memory-augmented neural networks (MANNs), we project a $2\times $ energy-delay–area-product (EDAP) improvement over an SRAM-TCAM.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
磁电三元内容可寻址存储器(TCAM)的建模与设计
本文提出了一种新的基于磁电效应的三元内容可寻址存储器(TCAM)。使用实验校准的紧凑物理模型和SPICE模拟,研究了所提出的ME-TCAM的潜在阵列级写入和搜索性能。ME器件的电压控制操作消除了电流控制磁性器件中存在的大焦耳加热,并且与基于静态随机存取存储器的TCAM(SRAM TCAM)相比,它们的低电压写入操作使它们更节能。所提出的紧凑型TCAM在搜索和写入能量方面分别提高了1.35美元和14.4美元,并且其非易失性消除了待机泄漏,优于SRAM。考虑到磁性和CMOS器件的各种变化源,我们预计误差率将低于$10^{-4}$。在应用层面,使用记忆增强神经网络(MANN),我们预计与SRAM-TCAM相比,能量延迟-面积积(EDAP)将提高2倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.00
自引率
4.20%
发文量
11
审稿时长
13 weeks
期刊最新文献
Design Considerations for Sub-1-V 1T1C FeRAM Memory Circuits Heterogeneous Integration Technologies for Artificial Intelligence Applications Scaling Logic Area With Multitier Standard Cells Accuracy Improvement With Weight Mapping Strategy and Output Transformation for STT-MRAM-Based Computing-in-Memory Energy-/Carbon-Aware Evaluation and Optimization of 3-D IC Architecture With Digital Compute-in-Memory Designs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1