Investigating the Scattering Characteristics of Artificial Field-Aligned Irregularities Based on T-Matrix Algorithm

IF 1.8 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Journal on Multiscale and Multiphysics Computational Techniques Pub Date : 2023-03-03 DOI:10.1109/JMMCT.2023.3252053
Shuai S. A. Yuan;Zhu Hong Lin;Li-Bin Lv;Shu-Ji Hao;Wei E. I. Sha
{"title":"Investigating the Scattering Characteristics of Artificial Field-Aligned Irregularities Based on T-Matrix Algorithm","authors":"Shuai S. A. Yuan;Zhu Hong Lin;Li-Bin Lv;Shu-Ji Hao;Wei E. I. Sha","doi":"10.1109/JMMCT.2023.3252053","DOIUrl":null,"url":null,"abstract":"The artificial field-aligned irregularity (AFAI) in ionosphere can be generated by heating the ionosphere with high-power high-frequency radio waves, and the physical structures of AFAIs are modeled as elongated multiple multilayer plasma cylinders. At relatively low frequencies, AFAIs could work as natural reflectors for long-distance communications. In order to evaluate the performance of AFAI-based communications, it is crucial to obtain the objective radar cross section (RCS) of AFAIs quickly and accurately. On account of the large electrical size of AFAIs, it would be time-consuming to calculate the objective RCS by full-wave simulations, meanwhile, the accuracies of the existing approximated methods are limited in many scenarios. In this paper, the T-matrix algorithm is used for analytically calculating the objective RCS of AFAIs after making reasonable approximations. Compared to the results obtained from full-wave simulations, the errors of objective RCS are within an acceptable range while the computation time is largely reduced. Furthermore, the scattering characteristics of AFAIs at different frequencies are investigated. The proposed method could be readily implemented for investigating and predicting the performance of AFAI-based long-wave communications.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10058168/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

Abstract

The artificial field-aligned irregularity (AFAI) in ionosphere can be generated by heating the ionosphere with high-power high-frequency radio waves, and the physical structures of AFAIs are modeled as elongated multiple multilayer plasma cylinders. At relatively low frequencies, AFAIs could work as natural reflectors for long-distance communications. In order to evaluate the performance of AFAI-based communications, it is crucial to obtain the objective radar cross section (RCS) of AFAIs quickly and accurately. On account of the large electrical size of AFAIs, it would be time-consuming to calculate the objective RCS by full-wave simulations, meanwhile, the accuracies of the existing approximated methods are limited in many scenarios. In this paper, the T-matrix algorithm is used for analytically calculating the objective RCS of AFAIs after making reasonable approximations. Compared to the results obtained from full-wave simulations, the errors of objective RCS are within an acceptable range while the computation time is largely reduced. Furthermore, the scattering characteristics of AFAIs at different frequencies are investigated. The proposed method could be readily implemented for investigating and predicting the performance of AFAI-based long-wave communications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于t矩阵算法的人工场对准不规则体散射特性研究
利用高功率高频无线电波加热电离层,可产生电离层人工场向不规则(AFAI),并将其物理结构建模为细长的多层等离子体柱。在相对较低的频率下,afai可以作为长距离通信的天然反射器。为了评估基于afai的通信性能,快速准确地获得afai的目标雷达截面(RCS)是至关重要的。由于afai的电尺寸较大,采用全波模拟方法计算目标RCS耗时长,同时现有的近似方法在很多情况下精度有限。本文采用t矩阵算法,对afai进行合理近似后,解析计算目标RCS。与全波模拟结果相比,目标RCS的误差在可接受范围内,计算时间大大缩短。此外,还研究了AFAIs在不同频率下的散射特性。该方法可以很容易地用于研究和预测基于afai的长波通信的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
27
期刊最新文献
Drift-Correcting Multiphysics Informed Neural Network Coupled PDE Solver An Indefinite Impedance Matrix Technique for Efficient Analysis of Planar Circuits With Irregular Shapes A New Electro-Thermal Simulation Approach for Moving Electromagnetic Rail Launchers Computational Electromagnetics Meets Spin Qubits: Controlling Noise Effects in Quantum Sensing and Computing Multiphysics Model of Thomson-Coil Actuators With Closed-Form Inductance Formulas and Comprehensive Mechanical Interactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1