Multiphysics Computing of Challenging Antenna Arrays Under a Supercomputer Framework

IF 1.8 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Journal on Multiscale and Multiphysics Computational Techniques Pub Date : 2023-03-10 DOI:10.1109/JMMCT.2023.3254661
Hao-Xuan Zhang;Qiwei Zhan;Li Huang;Da-Wei Wang;Yin-Da Wang;Wei-Jie Wang;Zhen-Guo Zhao;Hai-Jing Zhou;Kai Kang;Liang Zhou;Wen-Yan Yin
{"title":"Multiphysics Computing of Challenging Antenna Arrays Under a Supercomputer Framework","authors":"Hao-Xuan Zhang;Qiwei Zhan;Li Huang;Da-Wei Wang;Yin-Da Wang;Wei-Jie Wang;Zhen-Guo Zhao;Hai-Jing Zhou;Kai Kang;Liang Zhou;Wen-Yan Yin","doi":"10.1109/JMMCT.2023.3254661","DOIUrl":null,"url":null,"abstract":"A parallel multiphysics simulation solver is developed to solve electromagnetic-thermal-mechanical coupling for some challenging large-scale antenna arrays. To achieve high scalability of supercomputer architectures, we reconstruct the preconditioned BiCGSTAB method and the non-overlapping domain decomposition method, so that the most resource-intensive matrix factorization steps can be performed in parallel independently within subdomains. The electromagnetic and thermal fields are solved separately, while coupled through the dissipated power and the temperature-dependent material parameters; after thermal steady state is reached, the mechanical simulation is stimulated subject to the temperature rise. The accuracy of electromagnetic-thermal coupling and thermal stress solution are first validated, and then the strong/weak parallel scalability experiments of the developed multiphysics solver are performed on supercomputer. Finally, an extremely challenging antenna array is simulated using the proposed solver, where to our best knowledge we bring the scale of multiphysics simulations excited by frequency-domain electromagnetic fields to the order of billion unknowns for the first time.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":"8 ","pages":"165-177"},"PeriodicalIF":1.8000,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10065473/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

Abstract

A parallel multiphysics simulation solver is developed to solve electromagnetic-thermal-mechanical coupling for some challenging large-scale antenna arrays. To achieve high scalability of supercomputer architectures, we reconstruct the preconditioned BiCGSTAB method and the non-overlapping domain decomposition method, so that the most resource-intensive matrix factorization steps can be performed in parallel independently within subdomains. The electromagnetic and thermal fields are solved separately, while coupled through the dissipated power and the temperature-dependent material parameters; after thermal steady state is reached, the mechanical simulation is stimulated subject to the temperature rise. The accuracy of electromagnetic-thermal coupling and thermal stress solution are first validated, and then the strong/weak parallel scalability experiments of the developed multiphysics solver are performed on supercomputer. Finally, an extremely challenging antenna array is simulated using the proposed solver, where to our best knowledge we bring the scale of multiphysics simulations excited by frequency-domain electromagnetic fields to the order of billion unknowns for the first time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在超级计算机框架下挑战性天线阵列的多物理场计算
为解决大型天线阵的电磁-热-机械耦合问题,开发了一种并行多物理场仿真求解器。为了实现超级计算机体系结构的高可扩展性,我们重构了预置的BiCGSTAB方法和不重叠的域分解方法,使资源最密集的矩阵分解步骤能够在子域内并行独立地执行。电磁场和热场分别求解,并通过耗散功率和温度相关的材料参数进行耦合;在达到热稳态后,受温度升高的影响进行力学模拟。首先验证了电磁-热耦合和热应力求解的准确性,然后在超级计算机上对所开发的多物理场求解器进行了强/弱并行可扩展性实验。最后,使用所提出的求解器模拟了一个极具挑战性的天线阵列,据我们所知,我们首次将频域电磁场激发的多物理场模拟的规模提高到数十亿个未知数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
27
期刊最新文献
Experimental and Numerical Modeling of Magnetic Drug Targeting: Can We Trust Particle-Based Models? Table of Contents Editorial Rigorous Indoor Wireless Communication System Simulations With Deep Learning-Based Radio Propagation Models Transfer Learning Based Rapid Design of Frequency and Dielectric Agile Antennas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1