An Iterative Random Sampling Algorithm for Rapid and Scalable Estimation of Matrix Spectra

IF 1.8 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Journal on Multiscale and Multiphysics Computational Techniques Pub Date : 2023-03-30 DOI:10.1109/JMMCT.2023.3263152
Jon T. Kelley;Ali E. Yılmaz;Yaniv Brick
{"title":"An Iterative Random Sampling Algorithm for Rapid and Scalable Estimation of Matrix Spectra","authors":"Jon T. Kelley;Ali E. Yılmaz;Yaniv Brick","doi":"10.1109/JMMCT.2023.3263152","DOIUrl":null,"url":null,"abstract":"An easy-to-implement iterative algorithm that enables efficient and scalable spectral analysis of dense matrices is presented. The algorithm relies on the approximation of a matrix's singular values by those of a series of smaller matrices formed from uniform random sampling of its rows and columns. It is shown that, for sufficiently incoherent and rank-deficient matrices, the singular values [are expected to] decay at the same rate as those of matrices formed via this sampling scheme, which permits such matrices’ ranks to be accurately estimated from the smaller matrices’ spectra. Moreover, for such a matrix of size \n<inline-formula><tex-math>$m \\times n$</tex-math></inline-formula>\n, it is shown that the dominant singular values are [expected to be] \n<inline-formula><tex-math>$\\sqrt {mn} /k$</tex-math></inline-formula>\n times those of a \n<inline-formula><tex-math>$k \\times k$</tex-math></inline-formula>\n matrix formed by randomly sampling \n<inline-formula><tex-math>$k$</tex-math></inline-formula>\n of its rows and columns. Starting from a small initial guess \n<inline-formula><tex-math>$k\\ = {k}_0$</tex-math></inline-formula>\n, the algorithm repeatedly doubles \n<inline-formula><tex-math>$k$</tex-math></inline-formula>\n until two convergence criteria are met; the criteria to ensure that \n<inline-formula><tex-math>$k$</tex-math></inline-formula>\n is sufficiently large to estimate the singular values, to the desired accuracy, are presented. The algorithm's properties are analyzed theoretically and its efficacy is studied numerically for small to very-large matrices that result from discretization of integral-equation operators, with various physical kernels common in electromagnetics and acoustics, as well as for artificial matrices of various incoherence and rank-deficiency properties.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10087334/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 3

Abstract

An easy-to-implement iterative algorithm that enables efficient and scalable spectral analysis of dense matrices is presented. The algorithm relies on the approximation of a matrix's singular values by those of a series of smaller matrices formed from uniform random sampling of its rows and columns. It is shown that, for sufficiently incoherent and rank-deficient matrices, the singular values [are expected to] decay at the same rate as those of matrices formed via this sampling scheme, which permits such matrices’ ranks to be accurately estimated from the smaller matrices’ spectra. Moreover, for such a matrix of size $m \times n$ , it is shown that the dominant singular values are [expected to be] $\sqrt {mn} /k$ times those of a $k \times k$ matrix formed by randomly sampling $k$ of its rows and columns. Starting from a small initial guess $k\ = {k}_0$ , the algorithm repeatedly doubles $k$ until two convergence criteria are met; the criteria to ensure that $k$ is sufficiently large to estimate the singular values, to the desired accuracy, are presented. The algorithm's properties are analyzed theoretically and its efficacy is studied numerically for small to very-large matrices that result from discretization of integral-equation operators, with various physical kernels common in electromagnetics and acoustics, as well as for artificial matrices of various incoherence and rank-deficiency properties.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
矩阵谱快速可扩展估计的迭代随机抽样算法
提出了一种易于实现的迭代算法,可以实现密集矩阵的高效和可扩展的谱分析。该算法依赖于矩阵奇异值的近似,该近似是由矩阵的行和列的均匀随机抽样形成的一系列较小矩阵的奇异值。结果表明,对于充分不相干和秩不足的矩阵,奇异值[预计]以与通过该采样方案形成的矩阵相同的速率衰减,这允许从较小矩阵的谱中准确估计此类矩阵的秩。此外,对于这样一个大小为$m \ * n$的矩阵,我们证明了主导奇异值[期望]为$\sqrt {mn} /k$乘以由随机抽取$k$的行和列组成的$k \ * k$矩阵的奇异值。从一个小的初始猜测$k\ = {k}_0$开始,算法反复加倍$k$,直到满足两个收敛准则;给出了确保$k$足够大以估计奇异值并达到所需精度的准则。对该算法的性能进行了理论分析,并对具有电磁学和声学中常见的各种物理核的积分方程算子离散化产生的小到超大矩阵,以及具有各种非相干性和秩亏性的人工矩阵的有效性进行了数值研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
27
期刊最新文献
Drift-Correcting Multiphysics Informed Neural Network Coupled PDE Solver An Indefinite Impedance Matrix Technique for Efficient Analysis of Planar Circuits With Irregular Shapes A New Electro-Thermal Simulation Approach for Moving Electromagnetic Rail Launchers Computational Electromagnetics Meets Spin Qubits: Controlling Noise Effects in Quantum Sensing and Computing Multiphysics Model of Thomson-Coil Actuators With Closed-Form Inductance Formulas and Comprehensive Mechanical Interactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1