Large-scale direct regeneration of LiFePO4@C based on spray drying†

Yongxing Zou, Jinwei Cao, Hao Li, Wanbao Wu, Yihong Liang and Jiaheng Zhang
{"title":"Large-scale direct regeneration of LiFePO4@C based on spray drying†","authors":"Yongxing Zou, Jinwei Cao, Hao Li, Wanbao Wu, Yihong Liang and Jiaheng Zhang","doi":"10.1039/D2IM00007E","DOIUrl":null,"url":null,"abstract":"<p>Direct regeneration is a low-cost and environmentally friendly way of recycling spent Li-ion batteries. In this study, a new method is adopted to regenerate spent LiFePO<small><sub>4</sub></small>. First, the spent LiFePO<small><sub>4</sub></small> powder is homogenized, and then, small amounts of a lithium source and a carbon source are thoroughly mixed by spray drying. After that, a high-temperature solid-phase method is used to regenerate the carbon-coated lithium iron phosphate. Compared with traditional regeneration methods, the proposed method significantly improves the universality of spent LiFePO<small><sub>4</sub></small> having different degrees of damage. The regenerated LiFePO<small><sub>4</sub></small> is characterized using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and electrochemical measurements. The results show that the regenerated sample has a stable morphology, structure, and electrochemical performance. Under the conditions of 0.1C, the initial capacity exceeds 160 mA h g<small><sup>−1</sup></small>. After 800 cycles under the conditions of 1C, the capacity retention is 80%, which satisfies the requirements for regenerated LiFePO<small><sub>4</sub></small> batteries.</p><p>Keywords: LiFePO<small><sub>4</sub></small>; Direct regeneration; Homogenization; Spray drying; Electrochemical performance.</p>","PeriodicalId":29808,"journal":{"name":"Industrial Chemistry & Materials","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2023/im/d2im00007e?page=search","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Chemistry & Materials","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/im/d2im00007e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Direct regeneration is a low-cost and environmentally friendly way of recycling spent Li-ion batteries. In this study, a new method is adopted to regenerate spent LiFePO4. First, the spent LiFePO4 powder is homogenized, and then, small amounts of a lithium source and a carbon source are thoroughly mixed by spray drying. After that, a high-temperature solid-phase method is used to regenerate the carbon-coated lithium iron phosphate. Compared with traditional regeneration methods, the proposed method significantly improves the universality of spent LiFePO4 having different degrees of damage. The regenerated LiFePO4 is characterized using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and electrochemical measurements. The results show that the regenerated sample has a stable morphology, structure, and electrochemical performance. Under the conditions of 0.1C, the initial capacity exceeds 160 mA h g−1. After 800 cycles under the conditions of 1C, the capacity retention is 80%, which satisfies the requirements for regenerated LiFePO4 batteries.

Keywords: LiFePO4; Direct regeneration; Homogenization; Spray drying; Electrochemical performance.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于喷雾干燥的LiFePO4@C大规模直接再生†
直接再生是一种低成本、环保的废旧锂离子电池回收方法。本研究采用一种新的方法对废LiFePO4进行再生。首先将废LiFePO4粉末均质,然后将少量锂源和碳源通过喷雾干燥彻底混合。然后,采用高温固相法再生碳包覆磷酸铁锂。与传统再生方法相比,该方法显著提高了不同损伤程度废LiFePO4的通用性。利用x射线衍射、扫描电镜、透射电镜、拉曼光谱和电化学测量对再生LiFePO4进行了表征。结果表明,再生样品具有稳定的形貌、结构和电化学性能。在0.1C条件下,初始容量超过160 mA h g−1。在1C条件下循环800次后,容量保持率为80%,满足再生LiFePO4电池的要求。关键词:磷酸铁锂;直接再生;均质化;喷雾干燥;电化学性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Industrial Chemistry & Materials
Industrial Chemistry & Materials chemistry, chemical engineering, functional materials, energy, etc.-
自引率
0.00%
发文量
0
期刊介绍: Industrial Chemistry & Materials (ICM) publishes significant innovative research and major technological breakthroughs in all aspects of industrial chemistry and materials, with a particular focus on the important innovation of low-carbon chemical industry, energy and functional materials. By bringing researchers, engineers, and policymakers into one place, research is inspired, challenges are solved and the applications of science and technology are accelerated. The global editorial and advisory board members are valued experts in the community. With their support, the rigorous editorial practices and dissemination ensures your research is accessible and discoverable on a global scale. Industrial Chemistry & Materials publishes: ● Communications ● Full papers ● Minireviews ● Reviews ● Perspectives ● Comments
期刊最新文献
Membrane-free sequential paired electrosynthesis of 1,4-hydroquinone from phenol over a self-supported electrocatalytic electrode Back cover Toward a low-cost uranium-adsorbing material based on nonwoven fabrics and photografting technology Depolymerization of PET with Ethanol by Homogeneous Iron Catalysts Applied for Exclusive Chemical Recycling of Cloth Waste Introduction to the themed issue on liquid-based materials: novel concepts from fundamentals to applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1