Muhammad Saqlain Iqbal, Yukun Ruan, Ramsha Iftikhar, Faiza Zahid Khan, Weixiang Li, Leiduan Hao, Alex W. Robertson, Gianluca Percoco and Zhenyu Sun
{"title":"Lithium-mediated electrochemical dinitrogen reduction reaction","authors":"Muhammad Saqlain Iqbal, Yukun Ruan, Ramsha Iftikhar, Faiza Zahid Khan, Weixiang Li, Leiduan Hao, Alex W. Robertson, Gianluca Percoco and Zhenyu Sun","doi":"10.1039/D3IM00006K","DOIUrl":null,"url":null,"abstract":"<p>The Haber–Bosch process is the dominant approach for NH<small><sub>3</sub></small> production today, but the process has to be maintained at energy-intensive high temperatures and pressures. Li-mediated electrocatalytic dinitrogen reduction reaction (eN<small><sub>2</sub></small>RR) could instead enable sustainable and green NH<small><sub>3</sub></small> production at ambient conditions. Lithium mediators realize the synthesis of NH<small><sub>3</sub></small><em>via</em> the formation of Li<small><sub>3</sub></small>N, and thus lower the energy required for the direct cleavage of N<small><sub>2</sub></small>. There has now been a surge of interest in devising approaches to optimize the NH<small><sub>3</sub></small> yield rate and faradaic efficiency of the eN<small><sub>2</sub></small>RR process by employing different catalysts as well as electrolytes. This review discusses the recent advances in the field of the Li-mediated eN<small><sub>2</sub></small>RR along with the latest insights into the proposed catalytic mechanisms. Moreover, it also highlights the state-of-the-art reported electrocatalysts and electrolytes that have revolutionized the field of the Li-mediated eN<small><sub>2</sub></small>RR. In addition to the above, our review provides a critical overview of certain limitations and a future prospectus that will provide a way forward to explore this area.</p><p>Keywords: Nitrogen reduction reaction; Ammonia; Electrocatalysis; Lithium; Reaction mechanism.</p>","PeriodicalId":29808,"journal":{"name":"Industrial Chemistry & Materials","volume":" 4","pages":" 563-581"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2023/im/d3im00006k?page=search","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Chemistry & Materials","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/im/d3im00006k","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The Haber–Bosch process is the dominant approach for NH3 production today, but the process has to be maintained at energy-intensive high temperatures and pressures. Li-mediated electrocatalytic dinitrogen reduction reaction (eN2RR) could instead enable sustainable and green NH3 production at ambient conditions. Lithium mediators realize the synthesis of NH3via the formation of Li3N, and thus lower the energy required for the direct cleavage of N2. There has now been a surge of interest in devising approaches to optimize the NH3 yield rate and faradaic efficiency of the eN2RR process by employing different catalysts as well as electrolytes. This review discusses the recent advances in the field of the Li-mediated eN2RR along with the latest insights into the proposed catalytic mechanisms. Moreover, it also highlights the state-of-the-art reported electrocatalysts and electrolytes that have revolutionized the field of the Li-mediated eN2RR. In addition to the above, our review provides a critical overview of certain limitations and a future prospectus that will provide a way forward to explore this area.
期刊介绍:
Industrial Chemistry & Materials (ICM) publishes significant innovative research and major technological breakthroughs in all aspects of industrial chemistry and materials, with a particular focus on the important innovation of low-carbon chemical industry, energy and functional materials. By bringing researchers, engineers, and policymakers into one place, research is inspired, challenges are solved and the applications of science and technology are accelerated.
The global editorial and advisory board members are valued experts in the community. With their support, the rigorous editorial practices and dissemination ensures your research is accessible and discoverable on a global scale.
Industrial Chemistry & Materials publishes:
● Communications
● Full papers
● Minireviews
● Reviews
● Perspectives
● Comments