Lithium-mediated electrochemical dinitrogen reduction reaction

Muhammad Saqlain Iqbal, Yukun Ruan, Ramsha Iftikhar, Faiza Zahid Khan, Weixiang Li, Leiduan Hao, Alex W. Robertson, Gianluca Percoco and Zhenyu Sun
{"title":"Lithium-mediated electrochemical dinitrogen reduction reaction","authors":"Muhammad Saqlain Iqbal, Yukun Ruan, Ramsha Iftikhar, Faiza Zahid Khan, Weixiang Li, Leiduan Hao, Alex W. Robertson, Gianluca Percoco and Zhenyu Sun","doi":"10.1039/D3IM00006K","DOIUrl":null,"url":null,"abstract":"<p>The Haber–Bosch process is the dominant approach for NH<small><sub>3</sub></small> production today, but the process has to be maintained at energy-intensive high temperatures and pressures. Li-mediated electrocatalytic dinitrogen reduction reaction (eN<small><sub>2</sub></small>RR) could instead enable sustainable and green NH<small><sub>3</sub></small> production at ambient conditions. Lithium mediators realize the synthesis of NH<small><sub>3</sub></small><em>via</em> the formation of Li<small><sub>3</sub></small>N, and thus lower the energy required for the direct cleavage of N<small><sub>2</sub></small>. There has now been a surge of interest in devising approaches to optimize the NH<small><sub>3</sub></small> yield rate and faradaic efficiency of the eN<small><sub>2</sub></small>RR process by employing different catalysts as well as electrolytes. This review discusses the recent advances in the field of the Li-mediated eN<small><sub>2</sub></small>RR along with the latest insights into the proposed catalytic mechanisms. Moreover, it also highlights the state-of-the-art reported electrocatalysts and electrolytes that have revolutionized the field of the Li-mediated eN<small><sub>2</sub></small>RR. In addition to the above, our review provides a critical overview of certain limitations and a future prospectus that will provide a way forward to explore this area.</p><p>Keywords: Nitrogen reduction reaction; Ammonia; Electrocatalysis; Lithium; Reaction mechanism.</p>","PeriodicalId":29808,"journal":{"name":"Industrial Chemistry & Materials","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2023/im/d3im00006k?page=search","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Chemistry & Materials","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/im/d3im00006k","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The Haber–Bosch process is the dominant approach for NH3 production today, but the process has to be maintained at energy-intensive high temperatures and pressures. Li-mediated electrocatalytic dinitrogen reduction reaction (eN2RR) could instead enable sustainable and green NH3 production at ambient conditions. Lithium mediators realize the synthesis of NH3via the formation of Li3N, and thus lower the energy required for the direct cleavage of N2. There has now been a surge of interest in devising approaches to optimize the NH3 yield rate and faradaic efficiency of the eN2RR process by employing different catalysts as well as electrolytes. This review discusses the recent advances in the field of the Li-mediated eN2RR along with the latest insights into the proposed catalytic mechanisms. Moreover, it also highlights the state-of-the-art reported electrocatalysts and electrolytes that have revolutionized the field of the Li-mediated eN2RR. In addition to the above, our review provides a critical overview of certain limitations and a future prospectus that will provide a way forward to explore this area.

Keywords: Nitrogen reduction reaction; Ammonia; Electrocatalysis; Lithium; Reaction mechanism.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
锂离子介导的电化学二氮还原反应
Haber-Bosch工艺是目前NH3生产的主要方法,但该工艺必须在能源密集型的高温高压下保持。锂介导的电催化二氮还原反应(eN2RR)可以在环境条件下实现可持续和绿色的NH3生产。锂介质通过生成Li3N来实现nh3的合成,从而降低了直接裂解N2所需的能量。通过采用不同的催化剂和电解质,设计优化eN2RR过程的NH3产率和法拉第效率的方法引起了人们的极大兴趣。本文综述了锂介导eN2RR领域的最新进展以及对所提出的催化机制的最新见解。此外,它还强调了最先进的电催化剂和电解质,它们已经彻底改变了锂介导的eN2RR领域。除此之外,我们的评论还提供了对某些限制的关键概述和未来的招股说明书,将为探索这一领域提供一条前进的道路。关键词:氮还原反应;氨;电催化作用;锂;反应机理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Industrial Chemistry & Materials
Industrial Chemistry & Materials chemistry, chemical engineering, functional materials, energy, etc.-
自引率
0.00%
发文量
0
期刊介绍: Industrial Chemistry & Materials (ICM) publishes significant innovative research and major technological breakthroughs in all aspects of industrial chemistry and materials, with a particular focus on the important innovation of low-carbon chemical industry, energy and functional materials. By bringing researchers, engineers, and policymakers into one place, research is inspired, challenges are solved and the applications of science and technology are accelerated. The global editorial and advisory board members are valued experts in the community. With their support, the rigorous editorial practices and dissemination ensures your research is accessible and discoverable on a global scale. Industrial Chemistry & Materials publishes: ● Communications ● Full papers ● Minireviews ● Reviews ● Perspectives ● Comments
期刊最新文献
Membrane-free sequential paired electrosynthesis of 1,4-hydroquinone from phenol over a self-supported electrocatalytic electrode Back cover Toward a low-cost uranium-adsorbing material based on nonwoven fabrics and photografting technology Depolymerization of PET with Ethanol by Homogeneous Iron Catalysts Applied for Exclusive Chemical Recycling of Cloth Waste Introduction to the themed issue on liquid-based materials: novel concepts from fundamentals to applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1