Recent progress with the application of organic room-temperature phosphorescent materials

Mengxing Ji and Xiang Ma
{"title":"Recent progress with the application of organic room-temperature phosphorescent materials","authors":"Mengxing Ji and Xiang Ma","doi":"10.1039/D3IM00004D","DOIUrl":null,"url":null,"abstract":"<p>Organic materials with room-temperature phosphorescence (RTP) emission have attracted extensive attention owing to their extraordinary properties, including long lifetime, large Stokes shift, and stimuli-responsiveness, and show bright prospects in broad fields. Numerous design strategies, such as creating a rigid environment through crystallization and supramolecular assembly, can be employed to improve the luminescent characteristics of RTP materials by restricting nonradiative transition, enhancing intersystem crossing, and so forth. This review summarizes recent progress with organic room-temperature phosphorescent materials from the perspective of practical applications, including luminescence and display, environmental detection, and bioimaging, and the challenges and prospects will be discussed at the end, which should assist with future research on the application of RTP materials.</p><p>Keywords: Room-temperature phosphorescence; OLEDs; Anti-counterfeiting; Environmental detection; Bioimaging.</p>","PeriodicalId":29808,"journal":{"name":"Industrial Chemistry & Materials","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2023/im/d3im00004d?page=search","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Chemistry & Materials","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/im/d3im00004d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Organic materials with room-temperature phosphorescence (RTP) emission have attracted extensive attention owing to their extraordinary properties, including long lifetime, large Stokes shift, and stimuli-responsiveness, and show bright prospects in broad fields. Numerous design strategies, such as creating a rigid environment through crystallization and supramolecular assembly, can be employed to improve the luminescent characteristics of RTP materials by restricting nonradiative transition, enhancing intersystem crossing, and so forth. This review summarizes recent progress with organic room-temperature phosphorescent materials from the perspective of practical applications, including luminescence and display, environmental detection, and bioimaging, and the challenges and prospects will be discussed at the end, which should assist with future research on the application of RTP materials.

Keywords: Room-temperature phosphorescence; OLEDs; Anti-counterfeiting; Environmental detection; Bioimaging.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有机室温磷光材料的应用进展
具有室温磷光(RTP)发射的有机材料因其寿命长、斯托克斯位移大、刺激响应性强等特性而受到广泛关注,在广阔的应用领域具有广阔的前景。许多设计策略,例如通过结晶和超分子组装创造刚性环境,可以通过限制非辐射跃迁,增强系统间交叉等来改善RTP材料的发光特性。本文从发光与显示、环境检测、生物成像等方面综述了近年来有机室温磷光材料在实际应用方面的研究进展,并对面临的挑战和前景进行了展望,以期为今后有机室温磷光材料的应用研究提供参考。关键词:室温磷光;oled;防伪;环境检测;Bioimaging。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Industrial Chemistry & Materials
Industrial Chemistry & Materials chemistry, chemical engineering, functional materials, energy, etc.-
自引率
0.00%
发文量
0
期刊介绍: Industrial Chemistry & Materials (ICM) publishes significant innovative research and major technological breakthroughs in all aspects of industrial chemistry and materials, with a particular focus on the important innovation of low-carbon chemical industry, energy and functional materials. By bringing researchers, engineers, and policymakers into one place, research is inspired, challenges are solved and the applications of science and technology are accelerated. The global editorial and advisory board members are valued experts in the community. With their support, the rigorous editorial practices and dissemination ensures your research is accessible and discoverable on a global scale. Industrial Chemistry & Materials publishes: ● Communications ● Full papers ● Minireviews ● Reviews ● Perspectives ● Comments
期刊最新文献
Membrane-free sequential paired electrosynthesis of 1,4-hydroquinone from phenol over a self-supported electrocatalytic electrode Back cover Toward a low-cost uranium-adsorbing material based on nonwoven fabrics and photografting technology Depolymerization of PET with Ethanol by Homogeneous Iron Catalysts Applied for Exclusive Chemical Recycling of Cloth Waste Introduction to the themed issue on liquid-based materials: novel concepts from fundamentals to applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1