Electrochemical CO2 reduction with ionic liquids: review and evaluation†

Yangshuo Li, Fangfang Li, Aatto Laaksonen, Chuan Wang, Paul Cobden, Per Boden, Yanrong Liu, Xiangping Zhang and Xiaoyan Ji
{"title":"Electrochemical CO2 reduction with ionic liquids: review and evaluation†","authors":"Yangshuo Li, Fangfang Li, Aatto Laaksonen, Chuan Wang, Paul Cobden, Per Boden, Yanrong Liu, Xiangping Zhang and Xiaoyan Ji","doi":"10.1039/D2IM00055E","DOIUrl":null,"url":null,"abstract":"<p>The increasing CO<small><sub>2</sub></small> emission, as the chief culprit causing numerous environmental problems, could be addressed by the electrochemical CO<small><sub>2</sub></small> reduction (CO<small><sub>2</sub></small>R) to the added-value carbon-based chemicals. Ionic liquids (ILs) as electrolytes and co-catalysts have been widely studied to promote CO<small><sub>2</sub></small>R owing to their unique advantages. Among the potential products of CO<small><sub>2</sub></small>R, those only containing one carbon atom, named C1 products, including CO, CH<small><sub>3</sub></small>OH, CH<small><sub>4</sub></small>, and syngas, are easier to achieve than others. In this study, we first summarized the research status on CO<small><sub>2</sub></small>R to these C1 products, and then, the state-of-the-art experimental results were used to evaluate the economic potential and environmental impact. Considering the rapid development in CO<small><sub>2</sub></small>R, future scenarios with better CO<small><sub>2</sub></small>R performances were reasonably assumed to predict the future business for each product. Among the studied C1 products, the research focuses on CO, where satisfactory results have been achieved. The evaluation shows that producing CO <em>via</em> CO<small><sub>2</sub></small>R is the only profitable route at present. CH<small><sub>3</sub></small>OH and syngas of H<small><sub>2</sub></small>/CO (1 : 1) as the targeted products can become profitable in the foreseen future. In addition, the life cycle assessment (LCA) was used to evaluate the environmental impact, showing that CO<small><sub>2</sub></small>R to CH<small><sub>4</sub></small> is the most environmentally friendly pathway, followed by the syngas of H<small><sub>2</sub></small>/CO (2 : 1) and CO, and the further improvement of the CO<small><sub>2</sub></small>R performance can make all the studied C1 products more environmentally friendly. Overall, CO is the most promising product from both economic and environmental impact aspects.</p><p>Keywords: Electrochemical-CO<small><sub>2</sub></small>-reduction; Ionic-liquids; C1-product; Economic-evaluation; Environmental-impact.</p>","PeriodicalId":29808,"journal":{"name":"Industrial Chemistry & Materials","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2023/im/d2im00055e?page=search","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Chemistry & Materials","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/im/d2im00055e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The increasing CO2 emission, as the chief culprit causing numerous environmental problems, could be addressed by the electrochemical CO2 reduction (CO2R) to the added-value carbon-based chemicals. Ionic liquids (ILs) as electrolytes and co-catalysts have been widely studied to promote CO2R owing to their unique advantages. Among the potential products of CO2R, those only containing one carbon atom, named C1 products, including CO, CH3OH, CH4, and syngas, are easier to achieve than others. In this study, we first summarized the research status on CO2R to these C1 products, and then, the state-of-the-art experimental results were used to evaluate the economic potential and environmental impact. Considering the rapid development in CO2R, future scenarios with better CO2R performances were reasonably assumed to predict the future business for each product. Among the studied C1 products, the research focuses on CO, where satisfactory results have been achieved. The evaluation shows that producing CO via CO2R is the only profitable route at present. CH3OH and syngas of H2/CO (1 : 1) as the targeted products can become profitable in the foreseen future. In addition, the life cycle assessment (LCA) was used to evaluate the environmental impact, showing that CO2R to CH4 is the most environmentally friendly pathway, followed by the syngas of H2/CO (2 : 1) and CO, and the further improvement of the CO2R performance can make all the studied C1 products more environmentally friendly. Overall, CO is the most promising product from both economic and environmental impact aspects.

Keywords: Electrochemical-CO2-reduction; Ionic-liquids; C1-product; Economic-evaluation; Environmental-impact.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
离子液体的电化学CO2还原:综述与评价
二氧化碳排放的增加是造成众多环境问题的罪魁祸首,对高附加值碳基化学品进行电化学CO2还原(CO2R)可以解决这一问题。离子液体作为促进CO2R的电解质和助催化剂因其独特的优势而受到广泛的研究。在CO2R的潜在产物中,只含一个碳原子的产物,称为C1产物,包括CO、CH3OH、CH4和合成气,较容易实现。在本研究中,我们首先总结了这些C1产品的CO2R的研究现状,然后利用最新的实验结果对经济潜力和环境影响进行了评价。考虑到CO2R的快速发展,我们合理假设了CO2R性能较好的未来场景,来预测每个产品的未来业务。在研究的C1产品中,重点研究了CO,并取得了满意的结果。评价表明,利用CO2R生产CO是目前唯一有利可图的途径。CH3OH和H2/CO(1:1)合成气作为目标产品,在可预见的未来可以盈利。此外,利用生命周期评价(LCA)对其环境影响进行了评价,结果表明,CO2R生成CH4是最环保的途径,其次是H2/CO(2:1)和CO的合成气,进一步提高CO2R性能可以使所研究的C1产品更加环保。总的来说,从经济和环境影响方面来看,CO是最有前途的产品。关键词:Electrochemical-CO2-reduction;离子液体;C1-product;经济评价;环境影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Industrial Chemistry & Materials
Industrial Chemistry & Materials chemistry, chemical engineering, functional materials, energy, etc.-
自引率
0.00%
发文量
0
期刊介绍: Industrial Chemistry & Materials (ICM) publishes significant innovative research and major technological breakthroughs in all aspects of industrial chemistry and materials, with a particular focus on the important innovation of low-carbon chemical industry, energy and functional materials. By bringing researchers, engineers, and policymakers into one place, research is inspired, challenges are solved and the applications of science and technology are accelerated. The global editorial and advisory board members are valued experts in the community. With their support, the rigorous editorial practices and dissemination ensures your research is accessible and discoverable on a global scale. Industrial Chemistry & Materials publishes: ● Communications ● Full papers ● Minireviews ● Reviews ● Perspectives ● Comments
期刊最新文献
Membrane-free sequential paired electrosynthesis of 1,4-hydroquinone from phenol over a self-supported electrocatalytic electrode Back cover Toward a low-cost uranium-adsorbing material based on nonwoven fabrics and photografting technology Depolymerization of PET with Ethanol by Homogeneous Iron Catalysts Applied for Exclusive Chemical Recycling of Cloth Waste Introduction to the themed issue on liquid-based materials: novel concepts from fundamentals to applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1