{"title":"Ammonia as a carbon-free hydrogen carrier for fuel cells: a perspective","authors":"Lingling Zhai, Shizhen Liu and Zhonghua Xiang","doi":"10.1039/D3IM00036B","DOIUrl":null,"url":null,"abstract":"<p>Driven by the growing need to decarbonize, hydrogen energy is considered a potential alternative to fossil fuels. However, due to the problems associated with energy storage and transportation for portable applications, the scalable utilization of hydrogen is not fully developed. In this perspective, the potential of utilizing ammonia as a hydrogen carrier for on-site power generation <em>via</em> ammonia decomposition is systematically discussed. Firstly, an analysis of the chemical properties of ammonia and the limitations of this product for hydrogen production are presented. Secondly, some existing worldwide industrial projects that present the current development status are summarized. Then, recent advances in target engineering of efficient catalysts <em>via</em> various strategies are provided. Finally, different types of structured reactors to date for ammonia decomposition are explored. This perspective aims to shed light on the potential of ammonia as a promising alternative to traditional hydrogen storage methods and highlights the challenges and opportunities that lie ahead in this exciting field of research.</p><p>Keywords: Ammonia decomposition; Hydrogen carrier; On-site generation; Heterogeneous catalysts; Reactor.</p>","PeriodicalId":29808,"journal":{"name":"Industrial Chemistry & Materials","volume":" 3","pages":" 332-342"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2023/im/d3im00036b?page=search","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Chemistry & Materials","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/im/d3im00036b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Driven by the growing need to decarbonize, hydrogen energy is considered a potential alternative to fossil fuels. However, due to the problems associated with energy storage and transportation for portable applications, the scalable utilization of hydrogen is not fully developed. In this perspective, the potential of utilizing ammonia as a hydrogen carrier for on-site power generation via ammonia decomposition is systematically discussed. Firstly, an analysis of the chemical properties of ammonia and the limitations of this product for hydrogen production are presented. Secondly, some existing worldwide industrial projects that present the current development status are summarized. Then, recent advances in target engineering of efficient catalysts via various strategies are provided. Finally, different types of structured reactors to date for ammonia decomposition are explored. This perspective aims to shed light on the potential of ammonia as a promising alternative to traditional hydrogen storage methods and highlights the challenges and opportunities that lie ahead in this exciting field of research.
期刊介绍:
Industrial Chemistry & Materials (ICM) publishes significant innovative research and major technological breakthroughs in all aspects of industrial chemistry and materials, with a particular focus on the important innovation of low-carbon chemical industry, energy and functional materials. By bringing researchers, engineers, and policymakers into one place, research is inspired, challenges are solved and the applications of science and technology are accelerated.
The global editorial and advisory board members are valued experts in the community. With their support, the rigorous editorial practices and dissemination ensures your research is accessible and discoverable on a global scale.
Industrial Chemistry & Materials publishes:
● Communications
● Full papers
● Minireviews
● Reviews
● Perspectives
● Comments