Jinjing Tao, Xian Wang, Mingjun Xu, Changpeng Liu, Junjie Ge and Wei Xing
{"title":"Non-noble metals as activity sites for ORR catalysts in proton exchange membrane fuel cells (PEMFCs)","authors":"Jinjing Tao, Xian Wang, Mingjun Xu, Changpeng Liu, Junjie Ge and Wei Xing","doi":"10.1039/D3IM00002H","DOIUrl":null,"url":null,"abstract":"<p>Proton exchange membrane fuel cells (PEMFCs) have great potential to become the next generation green energy technique, but their application is limited by the slow kinetics of the cathode oxygen reduction reaction (ORR) in acidic medium. Meanwhile, the high price of Pt-based catalysts, which are now widely used commercially, has raised the cost of PEMFCs. Therefore, non-noble metal ORR catalysts as alternatives to Pt-based group metals (PGM) have attracted much attention. However, there is still a big gap between the performance of non-noble metal catalysts and commercial Pt/C catalysts in acidic environment. Recently, it has been realized that the performance of catalysts is closely related to the structure of catalytically active sites. Inspired by this, in this review, we firstly introduced the development and breakthrough of non-noble metals as activity sites. We then briefly summarized their catalytic mechanisms, and put forward some suggestions on how to improve the activity and stability of non-noble metal ORR catalysts.</p><p>Keywords: ORR; Non-noble metal single atom catalysts; Active site; Fuel cell.</p>","PeriodicalId":29808,"journal":{"name":"Industrial Chemistry & Materials","volume":" 3","pages":" 388-409"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2023/im/d3im00002h?page=search","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Chemistry & Materials","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/im/d3im00002h","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Proton exchange membrane fuel cells (PEMFCs) have great potential to become the next generation green energy technique, but their application is limited by the slow kinetics of the cathode oxygen reduction reaction (ORR) in acidic medium. Meanwhile, the high price of Pt-based catalysts, which are now widely used commercially, has raised the cost of PEMFCs. Therefore, non-noble metal ORR catalysts as alternatives to Pt-based group metals (PGM) have attracted much attention. However, there is still a big gap between the performance of non-noble metal catalysts and commercial Pt/C catalysts in acidic environment. Recently, it has been realized that the performance of catalysts is closely related to the structure of catalytically active sites. Inspired by this, in this review, we firstly introduced the development and breakthrough of non-noble metals as activity sites. We then briefly summarized their catalytic mechanisms, and put forward some suggestions on how to improve the activity and stability of non-noble metal ORR catalysts.
Keywords: ORR; Non-noble metal single atom catalysts; Active site; Fuel cell.
期刊介绍:
Industrial Chemistry & Materials (ICM) publishes significant innovative research and major technological breakthroughs in all aspects of industrial chemistry and materials, with a particular focus on the important innovation of low-carbon chemical industry, energy and functional materials. By bringing researchers, engineers, and policymakers into one place, research is inspired, challenges are solved and the applications of science and technology are accelerated.
The global editorial and advisory board members are valued experts in the community. With their support, the rigorous editorial practices and dissemination ensures your research is accessible and discoverable on a global scale.
Industrial Chemistry & Materials publishes:
● Communications
● Full papers
● Minireviews
● Reviews
● Perspectives
● Comments