{"title":"PET Composite Fiber Membranes Modified with Modified Nanoscale ZnO Exhibit Synergistic Antibacterial Effects","authors":"Long Yu, Dan Liu, Peng Gu, Kunlin Chen, Hua Qiu","doi":"10.1007/s12221-023-00369-4","DOIUrl":null,"url":null,"abstract":"<div><p>With the global prevalence of infectious diseases, the development of antimicrobial textiles has become imperative. In this study, a synergistic antibacterial powder of IZnO–SCSB was obtained by modifying zinc oxide (ZnO) nanoparticles with 3-isocyanatopropyltriethoxysilane (IPTS) and chitosan cinnamaldehyde Schiff base (SCSB). The powder was then mixed with a PET solution and a PET/IZnO–SCSB composite antibacterial fiber membrane was prepared using electrospinning. This composite fiber membrane demonstrates excellent mechanical properties, breathability, hydrophobicity, and antibacterial effects. The tensile strength and elongation at break were 2.4 MPa and 240.9%, respectively. When the membrane was loaded with 3 wt% of IZnO–SCSB, the antimicrobial rates against Gram-positive (<i>S. aureus</i>) and Gram-negative (<i>E. coli</i>) reached 99.80% and 97.08%, respectively. Therefore, this composite antibacterial fiber membrane has broad application prospects in antibacterial textiles such as masks and medical gauze.</p></div>","PeriodicalId":557,"journal":{"name":"Fibers and Polymers","volume":"24 11","pages":"3947 - 3960"},"PeriodicalIF":2.2000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibers and Polymers","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12221-023-00369-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0
Abstract
With the global prevalence of infectious diseases, the development of antimicrobial textiles has become imperative. In this study, a synergistic antibacterial powder of IZnO–SCSB was obtained by modifying zinc oxide (ZnO) nanoparticles with 3-isocyanatopropyltriethoxysilane (IPTS) and chitosan cinnamaldehyde Schiff base (SCSB). The powder was then mixed with a PET solution and a PET/IZnO–SCSB composite antibacterial fiber membrane was prepared using electrospinning. This composite fiber membrane demonstrates excellent mechanical properties, breathability, hydrophobicity, and antibacterial effects. The tensile strength and elongation at break were 2.4 MPa and 240.9%, respectively. When the membrane was loaded with 3 wt% of IZnO–SCSB, the antimicrobial rates against Gram-positive (S. aureus) and Gram-negative (E. coli) reached 99.80% and 97.08%, respectively. Therefore, this composite antibacterial fiber membrane has broad application prospects in antibacterial textiles such as masks and medical gauze.
期刊介绍:
-Chemistry of Fiber Materials, Polymer Reactions and Synthesis-
Physical Properties of Fibers, Polymer Blends and Composites-
Fiber Spinning and Textile Processing, Polymer Physics, Morphology-
Colorants and Dyeing, Polymer Analysis and Characterization-
Chemical Aftertreatment of Textiles, Polymer Processing and Rheology-
Textile and Apparel Science, Functional Polymers