Rushikesh Pandya, Shrey Nadiadwala, Rajvi Shah, Manan Shah
{"title":"Buildout of Methodology for Meticulous Diagnosis of K-Complex in EEG for Aiding the Detection of Alzheimer’s by Artificial Intelligence","authors":"Rushikesh Pandya, Shrey Nadiadwala, Rajvi Shah, Manan Shah","doi":"10.1007/s41133-019-0021-6","DOIUrl":null,"url":null,"abstract":"<div><p>Application of artificial intelligence (AI) in health-care detection is a domain of exceptional research and interest in today’s world. And hence among this domain, a considerable inclination is toward creating a smart system that is AI for aiding identification of brain-related disease—Alzheimer’s—using electroencephalogram (EEG). Certain AI-based techniques as well as systems have been created for EEG examination and interpretation, but they have a common drawback that is lack of shrewdness and acuteness. Therefore, to overcome these drawbacks, a different methodology or technique is suggested in this paper which is able to mold the AI technique for better EEG Cz strip K-complex identification. This suggested method and structure of AI detection system is relied on quantitative scrutinization of Cz strip and embedding-established EEG explication principles for detection of K-complex and Alzheimer’s. This technique unconditionally relied on facts and information of neuroscience that are applied by expert in health care such as neurologist to create a detailed review of sick person’s EEG. The suggested technique also allots a potential of learning on its own to the AI so that it can apply the events in future examinations.</p></div>","PeriodicalId":100147,"journal":{"name":"Augmented Human Research","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41133-019-0021-6","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Augmented Human Research","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s41133-019-0021-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41
Abstract
Application of artificial intelligence (AI) in health-care detection is a domain of exceptional research and interest in today’s world. And hence among this domain, a considerable inclination is toward creating a smart system that is AI for aiding identification of brain-related disease—Alzheimer’s—using electroencephalogram (EEG). Certain AI-based techniques as well as systems have been created for EEG examination and interpretation, but they have a common drawback that is lack of shrewdness and acuteness. Therefore, to overcome these drawbacks, a different methodology or technique is suggested in this paper which is able to mold the AI technique for better EEG Cz strip K-complex identification. This suggested method and structure of AI detection system is relied on quantitative scrutinization of Cz strip and embedding-established EEG explication principles for detection of K-complex and Alzheimer’s. This technique unconditionally relied on facts and information of neuroscience that are applied by expert in health care such as neurologist to create a detailed review of sick person’s EEG. The suggested technique also allots a potential of learning on its own to the AI so that it can apply the events in future examinations.