{"title":"The impact of climate change on groundwater quantity and quality in a semi-arid environment: a case study of Ain Azel plain (Northeast Algeria)","authors":"Hasna Aouati, Abdeslam Demdoum, Houria Kada, Riad Kouadra","doi":"10.1007/s11631-023-00633-7","DOIUrl":null,"url":null,"abstract":"<div><p>In the last decade, North Africa has witnessed significant population growth, particularly those bordering the Mediterranean Sea. This led to increased demand for groundwater, which is an essential source for various water uses such as drinking water supplies and irrigation. Generally, human activities play a crucial role in the different quantitative and qualitative changes in groundwater. Now, climate changes such as a decrease in precipitation have also led to a shortage of water resources and a decline in the groundwater table. This paper presents the impact of climate changes on groundwater resources in the Ain Azel region, Setif, northeastern Algeria. The analysis of long-term spatiotemporal variability in rainfall over 63 years (1958–2021) revealed a significant decline in groundwater recharge, especially after 2013. In contrast, the Pettitt and Mann–Kendall tests show increased temperatures with breaks between 1984 and 1986. A piezometric analysis of the alluvial aquifer demonstrated a significant decline in groundwater levels in the last 20 years. Hydrochemical analysis showed that groundwater in the region is dominated by Ca–Mg–Cl water type, which indicates the presence of water salinity phenomenon. Water Quality Index (WQI) analysis showed the deterioration of groundwater in the area, which may be caused by several factors: brine intrusion from the Salt Lake (Sebkha) in the north; the dissolution of evaporites (Triassic) and/or anthropogenic sources of agricultural and industrial origin. Our findings provide an overview summarizing the state of groundwater, which will help improve groundwater resource management in the region in the coming years.</p></div>","PeriodicalId":7151,"journal":{"name":"Acta Geochimica","volume":"42 6","pages":"1065 - 1078"},"PeriodicalIF":1.4000,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geochimica","FirstCategoryId":"1089","ListUrlMain":"https://link.springer.com/article/10.1007/s11631-023-00633-7","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
In the last decade, North Africa has witnessed significant population growth, particularly those bordering the Mediterranean Sea. This led to increased demand for groundwater, which is an essential source for various water uses such as drinking water supplies and irrigation. Generally, human activities play a crucial role in the different quantitative and qualitative changes in groundwater. Now, climate changes such as a decrease in precipitation have also led to a shortage of water resources and a decline in the groundwater table. This paper presents the impact of climate changes on groundwater resources in the Ain Azel region, Setif, northeastern Algeria. The analysis of long-term spatiotemporal variability in rainfall over 63 years (1958–2021) revealed a significant decline in groundwater recharge, especially after 2013. In contrast, the Pettitt and Mann–Kendall tests show increased temperatures with breaks between 1984 and 1986. A piezometric analysis of the alluvial aquifer demonstrated a significant decline in groundwater levels in the last 20 years. Hydrochemical analysis showed that groundwater in the region is dominated by Ca–Mg–Cl water type, which indicates the presence of water salinity phenomenon. Water Quality Index (WQI) analysis showed the deterioration of groundwater in the area, which may be caused by several factors: brine intrusion from the Salt Lake (Sebkha) in the north; the dissolution of evaporites (Triassic) and/or anthropogenic sources of agricultural and industrial origin. Our findings provide an overview summarizing the state of groundwater, which will help improve groundwater resource management in the region in the coming years.
期刊介绍:
Acta Geochimica serves as the international forum for essential research on geochemistry, the science that uses the tools and principles of chemistry to explain the mechanisms behind major geological systems such as the Earth‘s crust, its oceans and the entire Solar System, as well as a number of processes including mantle convection, the formation of planets and the origins of granite and basalt. The journal focuses on, but is not limited to the following aspects:
• Cosmochemistry
• Mantle Geochemistry
• Ore-deposit Geochemistry
• Organic Geochemistry
• Environmental Geochemistry
• Computational Geochemistry
• Isotope Geochemistry
• NanoGeochemistry
All research articles published in this journal have undergone rigorous peer review. In addition to original research articles, Acta Geochimica publishes reviews and short communications, aiming to rapidly disseminate the research results of timely interest, and comprehensive reviews of emerging topics in all the areas of geochemistry.