首页 > 最新文献

Acta Geochimica最新文献

英文 中文
The discovery of Late Triassic hypabyssal mafic dykes in the Huozhou complex and their geological significance: Evidence from petrology, geochemistry, and geochronology 霍州复合体晚三叠世下深成岩岩体的发现及其地质意义:岩石学、地球化学和地质年代学的证据
IF 1.4 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-10-11 DOI: 10.1007/s11631-024-00741-y
Haiyan Liu, Chong Peng

The Huozhou complex in the Trans-North China Orogen exhibits two events of mafic magmatism (separated by ca. 700 Ma): Neoproterozoic (920 ± 15 Ma) Shimenyu diabase and Late Triassic (217 ± 2.5 Ma) Xingtangsi diabase. Investigations have focused on systematic petrology, zircon U-Pb dating, Lu-Hf isotopes, and lithogeochemistry. The research findings indicate that the Late Triassic Xingtangsi diabase of the Huozhou complex can be classified as a transitional type between intermediate and mafic rocks based on their SiO2 content. This classification is supported by an average SiO2 content of 53.94%, ranging from 53.33% to 54.28%. In the Zr/TiO2 vs. Ce diagram, all samples lie within the range of basalt. The zircons from the Late Triassic Xingtangsi diabase have low εHf(t) values ranging from –12.7 to –8.7, with an average of –11.1. Additionally, the single-stage model age TDM1 is estimated to be between 1207 and 1701 Ma. These findings suggest that the magma responsible for the dyke originated from either partial melting or an enriched mantle source inside the Meso-Proterozoic lithospheric mantle. The elevated concentrations of Th (thorium) and LREEs (light rare earth elements), as well as the Th/Yb and Th/Nb ratios, suggest the potential incorporation of subducted sediments within the magma source region. The rock displays negative Nb, Ta, Zr, Hf, and Ti anomalies. These geochemical attributes align with the distinctive traits observed in volcanic rocks found within island arcs. The formation of the Late Triassic Xingtangsi diabase is likely associated with the geological context of an arc setting, which arises from the collision between the Yangtze plate and the North China Craton.

横断华北造山带的霍州岩浆岩群有两次岩浆活动(相距约 700 Ma),分别为新新生代(920 ± 15 Ma)的石门峪二长岩和晚三叠世(217 ± 2.5 Ma)的行唐寺二长岩:它们分别是新元古代(920 ± 15 Ma)的石门峪辉绿岩和晚三叠世(217 ± 2.5 Ma)的行唐寺辉绿岩。研究重点是系统岩石学、锆石 U-Pb 测定、Lu-Hf 同位素和岩石地球化学。研究结果表明,根据其二氧化硅含量,霍州复合体的晚三叠世兴唐寺二长岩可归类为介于中岩体和岩浆岩之间的过渡类型。平均 SiO2 含量为 53.94%,从 53.33% 到 54.28% 不等,这也支持了这一分类。在 Zr/TiO2 与 Ce 的关系图中,所有样品都属于玄武岩范围。晚三叠世兴唐寺二长岩的锆石εHf(t)值较低,从-12.7到-8.7不等,平均值为-11.1。此外,单级模型年龄TDM1估计在1207至1701Ma之间。这些研究结果表明,形成堤坝的岩浆来源于中新生代岩石圈地幔内部的部分熔融或富集地幔源。Th(钍)和LREEs(轻稀土元素)浓度的升高,以及Th/Yb和Th/Nb比值的升高,表明岩浆源区域内可能含有俯冲沉积物。岩石显示出 Nb、Ta、Zr、Hf 和 Ti 负异常。这些地球化学特征与在岛弧内发现的火山岩中观察到的独特特征一致。晚三叠世兴唐寺二长岩的形成很可能与长江板块和华北克拉通碰撞产生的弧形地质背景有关。
{"title":"The discovery of Late Triassic hypabyssal mafic dykes in the Huozhou complex and their geological significance: Evidence from petrology, geochemistry, and geochronology","authors":"Haiyan Liu,&nbsp;Chong Peng","doi":"10.1007/s11631-024-00741-y","DOIUrl":"10.1007/s11631-024-00741-y","url":null,"abstract":"<div><p>The Huozhou complex in the Trans-North China Orogen exhibits two events of mafic magmatism (separated by ca. 700 Ma): Neoproterozoic (920 ± 15 Ma) Shimenyu diabase and Late Triassic (217 ± 2.5 Ma) Xingtangsi diabase. Investigations have focused on systematic petrology, zircon U-Pb dating, Lu-Hf isotopes, and lithogeochemistry. The research findings indicate that the Late Triassic Xingtangsi diabase of the Huozhou complex can be classified as a transitional type between intermediate and mafic rocks based on their SiO<sub>2</sub> content. This classification is supported by an average SiO<sub>2</sub> content of 53.94%, ranging from 53.33% to 54.28%. In the Zr/TiO<sub>2</sub> vs. Ce diagram, all samples lie within the range of basalt. The zircons from the Late Triassic Xingtangsi diabase have low ε<sub>Hf</sub>(t) values ranging from –12.7 to –8.7, with an average of –11.1. Additionally, the single-stage model age T<sub>DM1</sub> is estimated to be between 1207 and 1701 Ma. These findings suggest that the magma responsible for the dyke originated from either partial melting or an enriched mantle source inside the Meso-Proterozoic lithospheric mantle. The elevated concentrations of Th (thorium) and LREEs (light rare earth elements), as well as the Th/Yb and Th/Nb ratios, suggest the potential incorporation of subducted sediments within the magma source region. The rock displays negative Nb, Ta, Zr, Hf, and Ti anomalies. These geochemical attributes align with the distinctive traits observed in volcanic rocks found within island arcs. The formation of the Late Triassic Xingtangsi diabase is likely associated with the geological context of an arc setting, which arises from the collision between the Yangtze plate and the North China Craton.</p></div>","PeriodicalId":7151,"journal":{"name":"Acta Geochimica","volume":"43 6","pages":"1013 - 1036"},"PeriodicalIF":1.4,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142664456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mineralogical study and significance of the basalt-hosted Carlin-type Au deposits in southwestern Guizhou Province, China 中国贵州省西南部玄武岩成因卡林型金矿床的矿物学研究及其意义
IF 1.4 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-09-06 DOI: 10.1007/s11631-024-00728-9
Yuhong Yang, Shen Liu, Jianzhong Liu, Zepeng Wang, Bingqiang Zhang, Chengfu Yang

The Jiadi and Damaidi gold deposits in southwest Guizhou Province are the largest basalt-hosted Carlin-type gold deposits recently discovered in China. This study uses the Tescan Integrated Mineral Analyzer, supported by detailed field investigations, regional geological data, and extensive sample collections, including mineralized ore, altered wall rock, and unaltered basalt samples, for ore-bearing and geochemical analyses. Comparative analysis between altered and unaltered basalt samples revealed a mineral assemblage of sericite, quartz, and pyrite. This mineral composition forms through the hydrothermal alteration of unaltered basalt, originally containing feldspar, pyroxene, and ilmenite. The wall rock primarily features sericite, quartz, and hematite. During the alteration process, major, trace, and rare earth elements notably migrate. In the Jiadi deposit, K2O, Rb, Au, and REE significantly increase, while Na2O, CaO, MgO, and MnO decrease. SiO2, Al2O3, and Fe2O3 levels remain relatively stable. In the Damaidi deposit, K2O, Rb, and Au enrich, contrasting with the depletion of Na2O, CaO, MgO, and MnO, while SiO2, Fe2O3, Al2O3, TiO2, and REE show no significant changes. In the wall rock, TiO2, Al2O3, K2O, and REE increase, while Na2O, CaO, MgO, and MnO decrease; SiO2 and Fe2O3 content remains unchanged. The mineralization process likely originated from mid- to low-temperature, reductive magmatic hydrothermal fluids rich in CO2, CH4, N2, H+, S2−, HS, H3AsO3, and [Au(HS)2]. These fluids migrated to tectonically weak zones in the Lianhuashan area, where Emeishan basalts are present. They reacted with Fe-bearing minerals in the basalt, such as ferro-hornblende and ilmenite, forming pyrite, arsenic-bearing pyrite, and arsenopyrite, thus enriching Au in these minerals. Additionally, K+ and H+ in the fluid reacted with plagioclase in the basalt, forming sericite and quartz. As the fluid entered the wall rock from structural weak zones, its oxidation increased, leading to the complete or partial reaction of Fe-bearing minerals in the wall rock, resulting in the formation of hematite or magnetite. This mineralization process is similar to that observed in carbonate-hosted Carlin-type gold deposits in southwest Guizhou, with the primary distinction being the iron source. In carbonate deposits, iron originates from ferridolomite within the wall rock, while in basalt-hosted deposits, it derives from ferripyroxene and ilmenite.

贵州省西南部的佳地金矿床和大麦地金矿床是中国近期发现的最大的玄武岩卡林型金矿床。这项研究使用了 Tescan 综合矿物分析仪,并辅以详细的野外调查、区域地质数据和大量样品采集,包括矿化矿石、蚀变壁岩和未蚀变玄武岩样品,进行含矿和地球化学分析。通过对蚀变玄武岩样本和未蚀变玄武岩样本进行比较分析,发现了由绢云母、石英和黄铁矿组成的矿物组合。这种矿物成分是通过热液蚀变未经蚀变的玄武岩形成的,原本含有长石、辉石和钛铁矿。壁岩的主要特征是绢云母、石英和赤铁矿。在蚀变过程中,主要元素、微量元素和稀土元素明显迁移。在 Jiadi 矿床中,K2O、Rb、Au 和 REE 明显增加,而 Na2O、CaO、MgO 和 MnO 则减少。SiO2、Al2O3 和 Fe2O3 的含量保持相对稳定。在大麦地矿床中,K2O、Rb 和 Au 含量增加,而 Na2O、CaO、MgO 和 MnO 含量减少,SiO2、Fe2O3、Al2O3、TiO2 和 REE 无明显变化。在壁岩中,TiO2、Al2O3、K2O 和 REE 增加,而 Na2O、CaO、MgO 和 MnO 减少;SiO2 和 Fe2O3 的含量保持不变。成矿过程可能源于富含CO2、CH4、N2、H+、S2-、HS-、H3AsO3和[Au(HS)2]-的中低温还原岩浆热液。这些流体迁移到峨眉山玄武岩所在的莲花山地区构造薄弱区。它们与玄武岩中的含铁矿物(如角闪石和钛铁矿)发生反应,形成黄铁矿、含砷黄铁矿和黄铜矿,从而富集了这些矿物中的金。此外,流体中的 K+ 和 H+ 与玄武岩中的斜长石发生反应,形成绢云母和石英。当流体从构造薄弱区进入壁岩时,其氧化作用增强,导致壁岩中的含铁矿物发生完全或部分反应,形成赤铁矿或磁铁矿。这一成矿过程与贵州西南部碳酸盐岩型卡林金矿床的成矿过程相似,主要区别在于铁的来源不同。在碳酸盐岩矿床中,铁来源于壁岩中的铁闪长岩,而在玄武岩矿床中,铁来源于铁闪长岩和钛铁矿。
{"title":"Mineralogical study and significance of the basalt-hosted Carlin-type Au deposits in southwestern Guizhou Province, China","authors":"Yuhong Yang,&nbsp;Shen Liu,&nbsp;Jianzhong Liu,&nbsp;Zepeng Wang,&nbsp;Bingqiang Zhang,&nbsp;Chengfu Yang","doi":"10.1007/s11631-024-00728-9","DOIUrl":"10.1007/s11631-024-00728-9","url":null,"abstract":"<div><p>The Jiadi and Damaidi gold deposits in southwest Guizhou Province are the largest basalt-hosted Carlin-type gold deposits recently discovered in China. This study uses the Tescan Integrated Mineral Analyzer, supported by detailed field investigations, regional geological data, and extensive sample collections, including mineralized ore, altered wall rock, and unaltered basalt samples, for ore-bearing and geochemical analyses. Comparative analysis between altered and unaltered basalt samples revealed a mineral assemblage of sericite, quartz, and pyrite. This mineral composition forms through the hydrothermal alteration of unaltered basalt, originally containing feldspar, pyroxene, and ilmenite. The wall rock primarily features sericite, quartz, and hematite. During the alteration process, major, trace, and rare earth elements notably migrate. In the Jiadi deposit, K<sub>2</sub>O, Rb, Au, and REE significantly increase, while Na<sub>2</sub>O, CaO, MgO, and MnO decrease. SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, and Fe<sub>2</sub>O<sub>3</sub> levels remain relatively stable. In the Damaidi deposit, K<sub>2</sub>O, Rb, and Au enrich, contrasting with the depletion of Na<sub>2</sub>O, CaO, MgO, and MnO, while SiO<sub>2</sub>, Fe<sub>2</sub>O<sub>3</sub>, Al<sub>2</sub>O<sub>3</sub>, TiO<sub>2</sub>, and REE show no significant changes. In the wall rock, TiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, K<sub>2</sub>O, and REE increase, while Na<sub>2</sub>O, CaO, MgO, and MnO decrease; SiO<sub>2</sub> and Fe<sub>2</sub>O<sub>3</sub> content remains unchanged. The mineralization process likely originated from mid- to low-temperature, reductive magmatic hydrothermal fluids rich in CO<sub>2</sub>, CH<sub>4</sub>, N<sub>2</sub>, H<sup>+</sup>, S<sup>2−</sup>, HS<sup>−</sup>, H<sub>3</sub>AsO<sub>3</sub>, and [Au(HS)<sub>2</sub>]<sup>−</sup>. These fluids migrated to tectonically weak zones in the Lianhuashan area, where Emeishan basalts are present. They reacted with Fe-bearing minerals in the basalt, such as ferro-hornblende and ilmenite, forming pyrite, arsenic-bearing pyrite, and arsenopyrite, thus enriching Au in these minerals. Additionally, K<sup>+</sup> and H<sup>+</sup> in the fluid reacted with plagioclase in the basalt, forming sericite and quartz. As the fluid entered the wall rock from structural weak zones, its oxidation increased, leading to the complete or partial reaction of Fe-bearing minerals in the wall rock, resulting in the formation of hematite or magnetite. This mineralization process is similar to that observed in carbonate-hosted Carlin-type gold deposits in southwest Guizhou, with the primary distinction being the iron source. In carbonate deposits, iron originates from ferridolomite within the wall rock, while in basalt-hosted deposits, it derives from ferripyroxene and ilmenite.</p></div>","PeriodicalId":7151,"journal":{"name":"Acta Geochimica","volume":"43 6","pages":"1241 - 1254"},"PeriodicalIF":1.4,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142664446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Precise and accurate Ga isotope ratio measurements of geological samples by multi-collector inductively coupled plasma mass spectrometry 利用多收集器电感耦合等离子体质谱法精确测量地质样本的 Ga 同位素比值
IF 1.4 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-08-22 DOI: 10.1007/s11631-024-00729-8
Yuxu Zhang, Pan Qiao, Chuanwei Zhu, Haifeng Fan, Hanjie Wen

Gallium isotope is a potential geochemical tool for understanding planetary processes, environmental pollution, and ore deposit formation. The reported Ga isotope compositions (δ71GaNIST994 values) of some international geological standards, such as BCR-2 and BHVO-2 basalts, exhibit inconsistencies between different laboratories. During mass spectrometry analysis, we found that δ71GaNIST994 values of geological standards with or without the correction of the interference of 138Ba2+ (mass/charge ratio = 69) on 69Ga show significant isotope offsets, and thus efficient separation of Ba and correcting the interference of 138Ba2+ are both crucial to obtain accurate δ71Ga values. By comparing δ71GaNIST994 values (relative to NIST SRM 994 Ga) of the same geostandards from different laboratories, we suggest that the isotopic heterogeneity from NIST SRM 994 Ga is one of the key reasons for the inconsistencies in δ71GaNIST994 values of BCR-2 and BHVO-2. To facilitate inter-laboratory comparisons, we measured the Ga isotopic compositions of 11 geological reference materials (including Pb-Zn ore, bauxite, igneous rocks, and loess) and two Ga solution standards (NIST SRM 3119a and Alfa Aesar). The δ71GaNIST994 and δ71GaIPGP values of these reference materials vary from 1.12 ‰ to 2.63 ‰ and − 0.13 ‰ to 1.38 ‰, respectively, and can be used to evaluate the precision and accuracy of Ga isotope data from different laboratories.

镓同位素是了解行星运行过程、环境污染和矿床形成的潜在地球化学工具。一些国际地质标准(如 BCR-2 和 BHVO-2 玄武岩)所报告的镓同位素组成(δ71GaNIST994 值)在不同实验室之间存在不一致。在质谱分析过程中,我们发现无论是否校正了 138Ba2+(质量/电荷比 = 69)对 69Ga 的干扰,地质标准物质的 δ71GaNIST994 值都会出现明显的同位素偏移,因此有效分离 Ba 和校正 138Ba2+ 的干扰对于获得准确的 δ71Ga 值都至关重要。通过比较来自不同实验室的相同地质标准的δ71GaNIST994值(相对于NIST SRM 994 Ga),我们认为来自NIST SRM 994 Ga的同位素异质性是导致BCR-2和BHVO-2的δ71GaNIST994值不一致的关键原因之一。为了便于实验室之间的比较,我们测量了 11 种地质参考材料(包括铅锌矿、铝土矿、火成岩和黄土)和两种镓溶液标准(NIST SRM 3119a 和 Alfa Aesar)的镓同位素组成。这些参考材料的δ71GaNIST994和δ71GaIPGP值分别介于1.12‰至2.63‰和-0.13‰至1.38‰之间,可用于评估来自不同实验室的镓同位素数据的精确度和准确性。
{"title":"Precise and accurate Ga isotope ratio measurements of geological samples by multi-collector inductively coupled plasma mass spectrometry","authors":"Yuxu Zhang,&nbsp;Pan Qiao,&nbsp;Chuanwei Zhu,&nbsp;Haifeng Fan,&nbsp;Hanjie Wen","doi":"10.1007/s11631-024-00729-8","DOIUrl":"10.1007/s11631-024-00729-8","url":null,"abstract":"<div><p>Gallium isotope is a potential geochemical tool for understanding planetary processes, environmental pollution, and ore deposit formation. The reported Ga isotope compositions (δ<sup>71</sup>Ga<sub>NIST994</sub> values) of some international geological standards, such as BCR-2 and BHVO-2 basalts, exhibit inconsistencies between different laboratories. During mass spectrometry analysis, we found that δ<sup>71</sup>Ga<sub>NIST994</sub> values of geological standards with or without the correction of the interference of <sup>138</sup>Ba<sup>2+</sup> (mass/charge ratio = 69) on <sup>69</sup>Ga show significant isotope offsets, and thus efficient separation of Ba and correcting the interference of <sup>138</sup>Ba<sup>2+</sup> are both crucial to obtain accurate δ<sup>71</sup>Ga values. By comparing δ<sup>71</sup>Ga<sub>NIST994</sub> values (relative to NIST SRM 994 Ga) of the same geostandards from different laboratories, we suggest that the isotopic heterogeneity from NIST SRM 994 Ga is one of the key reasons for the inconsistencies in δ<sup>71</sup>Ga<sub>NIST994</sub> values of BCR-2 and BHVO-2. To facilitate inter-laboratory comparisons, we measured the Ga isotopic compositions of 11 geological reference materials (including Pb-Zn ore, bauxite, igneous rocks, and loess) and two Ga solution standards (NIST SRM 3119a and Alfa Aesar). The δ<sup>71</sup>Ga<sub>NIST994</sub> and δ<sup>71</sup>Ga<sub>IPGP</sub> values of these reference materials vary from 1.12 ‰ to 2.63 ‰ and − 0.13 ‰ to 1.38 ‰, respectively, and can be used to evaluate the precision and accuracy of Ga isotope data from different laboratories.</p></div>","PeriodicalId":7151,"journal":{"name":"Acta Geochimica","volume":"43 6","pages":"1054 - 1064"},"PeriodicalIF":1.4,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142664443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Geology and S-Pb isotope geochemistry of the Hatu gold deposit in West Junggar, NW China: Insights into ore genesis and metal source 中国西北准噶尔西部哈图金矿床的地质学和 S-Pb 同位素地球化学:洞察矿石成因和金属来源
IF 1.4 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-08-21 DOI: 10.1007/s11631-024-00727-w
Shen Han, Zhenju Zhou, Xiaohua Deng, Yanshuang Wu, Xi Chen, Abulimiti Aibai, Yong Wang, Xiaoyu Jia, Yanjing Chen

The Hatu gold deposit is the largest historical gold producer of the West Junggar, western China, with an Au reserve of about 62 t. The orebodies were controlled by NE-, EW-, and NW-trending subsidiary faults associated with the Anqi fault. This deposit exhibits characteristics typical of a fault-controlled lode system, and the orebodies consist of auriferous quartz veins and altered wall rocks within Early Carboniferous volcano-sedimentary rocks. Three stages of mineralization have been identified in the Hatu gold deposit: the early pyrite-albite-quartz stage, the middle polymetallic sulfides-ankerite-quartz stage, and late quartz-calcite stage. The sulfur isotopic values of pyrite and arsenopyrite vary in a narrow range from − 0.8‰ to 1.3‰ and an average of 0.4‰, the near-zero δ34S values implicate the thorough homogenization of the sulfur isotopes during the metamorphic dehydration of the Early Carboniferous volcano-sedimentary rocks. Lead isotopic results of pyrite and arsenopyrite (206Pb/204Pb = 17.889–18.447, 207Pb/204Pb = 15.492–15.571, 208Pb/204Pb = 37.802–38.113) are clustered between orogenic and mantle/upper crust lines, indicating that the lead was mainly sourced from the hostrocks within the Early Carboniferous Tailegula Formation. The characteristics of S and Pb isotopes suggest that the ore-forming metals of the Hatu orogenic gold deposit are of metamorphogenic origin, associated with the continental collision between the Yili-Kazakhstan and Siberian plates during the Late Carboniferous.

哈图金矿床是中国西部准噶尔西部历史上最大的金矿,金储量约为62吨。矿体受与安齐断层相关的东北向、东西向和西北向次级断层控制。该矿床具有典型的断层控制矿体系统特征,矿体由含金石英脉和早石炭纪火山沉积岩中的蚀变壁岩组成。哈图金矿床的矿化分为三个阶段:早期黄铁矿-褐铁矿-石英阶段、中期多金属硫化物-绢云母-石英阶段和晚期石英-方解石阶段。黄铁矿和砷黄铁矿的硫同位素值变化范围很窄,从-0.8‰到1.3‰,平均为0.4‰,δ34S值接近于零,说明早石炭纪火山沉积岩变质脱水过程中硫同位素彻底同质化。黄铁矿和砷黄铁矿的铅同位素结果(206Pb/204Pb = 17.889-18.447,207Pb/204Pb = 15.492-15.571,208Pb/204Pb = 37.802-38.113)集中在造山系和地幔/上地壳系之间,表明铅主要来源于早石炭世泰勒古拉地层中的母岩。S和Pb同位素的特征表明,哈图成因金矿床的成矿金属是变质成因的,与晚石炭纪伊犁-哈萨克斯坦板块和西伯利亚板块之间的大陆碰撞有关。
{"title":"Geology and S-Pb isotope geochemistry of the Hatu gold deposit in West Junggar, NW China: Insights into ore genesis and metal source","authors":"Shen Han,&nbsp;Zhenju Zhou,&nbsp;Xiaohua Deng,&nbsp;Yanshuang Wu,&nbsp;Xi Chen,&nbsp;Abulimiti Aibai,&nbsp;Yong Wang,&nbsp;Xiaoyu Jia,&nbsp;Yanjing Chen","doi":"10.1007/s11631-024-00727-w","DOIUrl":"10.1007/s11631-024-00727-w","url":null,"abstract":"<div><p>The Hatu gold deposit is the largest historical gold producer of the West Junggar, western China, with an Au reserve of about 62 t. The orebodies were controlled by NE-, EW-, and NW-trending subsidiary faults associated with the Anqi fault. This deposit exhibits characteristics typical of a fault-controlled lode system, and the orebodies consist of auriferous quartz veins and altered wall rocks within Early Carboniferous volcano-sedimentary rocks. Three stages of mineralization have been identified in the Hatu gold deposit: the early pyrite-albite-quartz stage, the middle polymetallic sulfides-ankerite-quartz stage, and late quartz-calcite stage. The sulfur isotopic values of pyrite and arsenopyrite vary in a narrow range from − 0.8‰ to 1.3‰ and an average of 0.4‰, the near-zero δ<sup>34</sup>S values implicate the thorough homogenization of the sulfur isotopes during the metamorphic dehydration of the Early Carboniferous volcano-sedimentary rocks. Lead isotopic results of pyrite and arsenopyrite (<sup>206</sup>Pb/<sup>204</sup>Pb = 17.889–18.447, <sup>207</sup>Pb/<sup>204</sup>Pb = 15.492–15.571, <sup>208</sup>Pb/<sup>204</sup>Pb = 37.802–38.113) are clustered between orogenic and mantle/upper crust lines, indicating that the lead was mainly sourced from the hostrocks within the Early Carboniferous Tailegula Formation. The characteristics of S and Pb isotopes suggest that the ore-forming metals of the Hatu orogenic gold deposit are of metamorphogenic origin, associated with the continental collision between the Yili-Kazakhstan and Siberian plates during the Late Carboniferous.</p></div>","PeriodicalId":7151,"journal":{"name":"Acta Geochimica","volume":"43 6","pages":"1205 - 1222"},"PeriodicalIF":1.4,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142664423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ore-forming mechanism of Huxu Au-dominated polymetallic deposit in the Dongxiang Basin, South China: Constraints from in-situ trace elements and S–Pb isotopes of pyrite 华南东乡盆地湖圩金多金属矿床成矿机制:黄铁矿原位痕量元素和 S-Pb 同位素的制约因素
IF 1.4 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-08-15 DOI: 10.1007/s11631-024-00726-x
Hongze Gao, Jiajie Chen, Chengbiao Leng, Yuhui Hu, Huidan Xie, Zenghua Li

The Huxu Au-dominated polymetallic deposit is a hydrothermal deposit located in the Dongxiang volcanic basin in the middle section of the Gan-Hang tectonic belt in South China. The orebodies primarily occur within the Jurassic-Cretaceous quartz diorite porphyry, while the genesis of this deposit is unclear. This study focused on geological and mineralogical characteristics, in-situ trace elements and S-Pb isotopes of three generations of pyrite of the Huxu deposit to clarify the distribution of trace elements in pyrite, ore-forming fluid and material sources, and genetic types of the deposit. The mineralization stage of the deposit can be divided into quartz-pyrite stage (S1), quartz-pyrite-hematite stage (S2), quartz-polymetallic sulfide stage (S3) and quartz-hematite stage (S4), with the corresponding pyrite being divided into three generations (Py1–Py3). in-situ trace element data of pyrite show that Au in pyrite mainly exists in the form of solid solution (Au+), and the content is relatively low at all stages (0.18 ppm for Py1, 0.32 ppm for Py2, 0.68 ppm for Py3), while Pb and Zn mainly exist as sulfide inclusions in the pyrite. S-Pb isotopes show that the sulfur and ore-forming material of this deposit are mainly sourced from magma. The mineral association, mineral textures and trace elements in different stages of pyrite indicate that fluid boiling and fluid mixing are the key factors of native gold precipitation in S2 and S4, respectively, while water-rock interaction controlled the precipitation of Pb-Zn sulfides. These integrating with geological characteristics suggests that the deposit should be an intermediate sulfidation epithermal deposit.

湖圩金多金属矿床是一个热液矿床,位于华南赣杭构造带中段的东乡火山盆地。矿体主要赋存于侏罗纪-白垩纪石英闪长岩斑岩中,其成因尚不清楚。本研究重点研究了湖圩矿床三代黄铁矿的地质矿物学特征、原位微量元素和S-Pb同位素,以明确黄铁矿中微量元素的分布、成矿流体和物质来源以及矿床的成因类型。该矿床的成矿阶段可分为石英-黄铁矿阶段(S1)、石英-黄铁矿-赤铁矿阶段(S2)、石英-多金属硫化物阶段(S3)和石英-赤铁矿阶段(S4),相应的黄铁矿分为三代(Py1-Py3)。黄铁矿的原位痕量元素数据显示,黄铁矿中的金主要以固溶体(Au+)的形式存在,在各个阶段的含量都相对较低(Py1 为 0.18 ppm,Py2 为 0.32 ppm,Py3 为 0.68 ppm),而铅和锌则主要以硫化物包裹体的形式存在于黄铁矿中。S-Pb 同位素显示,该矿床的硫和成矿物质主要来自岩浆。黄铁矿不同阶段的矿物关联、矿物质地和微量元素表明,流体沸腾和流体混合分别是 S2 和 S4 原生金沉淀的关键因素,而水岩作用控制了铅锌硫化物的沉淀。这些与地质特征的结合表明,该矿床应属于中硫化热液矿床。
{"title":"Ore-forming mechanism of Huxu Au-dominated polymetallic deposit in the Dongxiang Basin, South China: Constraints from in-situ trace elements and S–Pb isotopes of pyrite","authors":"Hongze Gao,&nbsp;Jiajie Chen,&nbsp;Chengbiao Leng,&nbsp;Yuhui Hu,&nbsp;Huidan Xie,&nbsp;Zenghua Li","doi":"10.1007/s11631-024-00726-x","DOIUrl":"10.1007/s11631-024-00726-x","url":null,"abstract":"<div><p>The Huxu Au-dominated polymetallic deposit is a hydrothermal deposit located in the Dongxiang volcanic basin in the middle section of the Gan-Hang tectonic belt in South China. The orebodies primarily occur within the Jurassic-Cretaceous quartz diorite porphyry, while the genesis of this deposit is unclear. This study focused on geological and mineralogical characteristics, <i>in-situ</i> trace elements and S-Pb isotopes of three generations of pyrite of the Huxu deposit to clarify the distribution of trace elements in pyrite, ore-forming fluid and material sources, and genetic types of the deposit. The mineralization stage of the deposit can be divided into quartz-pyrite stage (S1), quartz-pyrite-hematite stage (S2), quartz-polymetallic sulfide stage (S3) and quartz-hematite stage (S4), with the corresponding pyrite being divided into three generations (Py1–Py3). <i>in-situ</i> trace element data of pyrite show that Au in pyrite mainly exists in the form of solid solution (Au<sup>+</sup>), and the content is relatively low at all stages (0.18 ppm for Py1, 0.32 ppm for Py2, 0.68 ppm for Py3), while Pb and Zn mainly exist as sulfide inclusions in the pyrite. S-Pb isotopes show that the sulfur and ore-forming material of this deposit are mainly sourced from magma. The mineral association, mineral textures and trace elements in different stages of pyrite indicate that fluid boiling and fluid mixing are the key factors of native gold precipitation in S2 and S4, respectively, while water-rock interaction controlled the precipitation of Pb-Zn sulfides. These integrating with geological characteristics suggests that the deposit should be an intermediate sulfidation epithermal deposit.</p></div>","PeriodicalId":7151,"journal":{"name":"Acta Geochimica","volume":"43 6","pages":"1223 - 1240"},"PeriodicalIF":1.4,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142664464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The lithology and composition of lunar mantle modified by ilmenite bearing cumulate: A thermodynamic model 含钛铁矿累晶改变的月幔岩性和成分:热力学模型
IF 1.4 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-07-12 DOI: 10.1007/s11631-024-00718-x
Wei Huang, Wei Du

Due to their high density, the ilmenite-bearing cumulates (IBC) (with or without KREEP) formed during the late-stage lunar magma ocean solidification are thought to sink into the underlying lunar mantle and trigger lunar mantle overturn. Geophysical evidence implied that IBC may descend deep inside the Moon and remain as a partially molten layer at the core-mantle boundary (CMB). However, partial melting may have occurred on the mixed mantle cumulates during the sinking of IBC/KREEP and the silicate melt may be positively buoyant, thus preventing the IBC/KREEP layer from sinking to the CMB. Here, we perform thermodynamic simulation on the stability of lunar mantle cumulates at different depths mixed with different amounts of IBC/KREEP from an updated LMO model. The modeling results suggest that the sinking of IBC/KREEP will cause at least 5 wt% partial melting in the shallow (~ 120 km) and a much larger degree of partial melting in the deep lunar mantle (~ 420 km). Due to the density contrast with the surrounding mantle, IBC/KREEP-bearing melts could potentially decouple under certain conditions. The modified lunar mantle by sinking of IBC/KREEP can better explain the formation of different kinds of lunar basaltic magma than the primary lunar mantle formed through differentiation of lunar magma ocean. Sinking of IBC/KREEP back into the lunar mantle may introduce plagioclase, clinopyroxene, garnet, and incompatible radioactive elements into the deep lunar mantle, which will further affect the thermal and chemical evolution of the lunar interior.

由于密度较高,人们认为在月球岩浆洋凝固晚期形成的含钛铁矿积块(IBC)(含或不含KREEP)会沉入下层月幔并引发月幔倾覆。地球物理证据表明,中生代岩浆可能沉降到月球深处,并作为部分熔融层留在月核-地幔边界(CMB)。然而,在IBC/KREEP下沉过程中,混合地幔积层可能发生了部分熔融,硅酸盐熔体可能具有正浮力,从而阻止IBC/KREEP层下沉到CMB。在此,我们利用更新的 LMO 模型对不同深度的月幔积层与不同量的 IBC/KREEP 混合后的稳定性进行了热力学模拟。模拟结果表明,IBC/KREEP 的下沉将导致浅层地幔(约 120 千米)至少 5 wt%的部分熔化,而深层地幔(约 420 千米)的部分熔化程度要大得多。由于与周围地幔的密度对比,含 IBC/KREEP 的熔体在某些条件下可能会脱钩。与月球岩浆洋分异形成的原生月幔相比,IBC/KREEP下沉改造的月幔能更好地解释不同种类的月球玄武岩浆的形成。IBC/KREEP沉回月幔可能会将斜长石、挛辉石、石榴石和不相容放射性元素引入月幔深处,从而进一步影响月球内部的热演化和化学演化。
{"title":"The lithology and composition of lunar mantle modified by ilmenite bearing cumulate: A thermodynamic model","authors":"Wei Huang,&nbsp;Wei Du","doi":"10.1007/s11631-024-00718-x","DOIUrl":"10.1007/s11631-024-00718-x","url":null,"abstract":"<div><p>Due to their high density, the ilmenite-bearing cumulates (IBC) (with or without KREEP) formed during the late-stage lunar magma ocean solidification are thought to sink into the underlying lunar mantle and trigger lunar mantle overturn. Geophysical evidence implied that IBC may descend deep inside the Moon and remain as a partially molten layer at the core-mantle boundary (CMB). However, partial melting may have occurred on the mixed mantle cumulates during the sinking of IBC/KREEP and the silicate melt may be positively buoyant, thus preventing the IBC/KREEP layer from sinking to the CMB. Here, we perform thermodynamic simulation on the stability of lunar mantle cumulates at different depths mixed with different amounts of IBC/KREEP from an updated LMO model. The modeling results suggest that the sinking of IBC/KREEP will cause at least 5 wt% partial melting in the shallow (~ 120 km) and a much larger degree of partial melting in the deep lunar mantle (~ 420 km). Due to the density contrast with the surrounding mantle, IBC/KREEP-bearing melts could potentially decouple under certain conditions. The modified lunar mantle by sinking of IBC/KREEP can better explain the formation of different kinds of lunar basaltic magma than the primary lunar mantle formed through differentiation of lunar magma ocean. Sinking of IBC/KREEP back into the lunar mantle may introduce plagioclase, clinopyroxene, garnet, and incompatible radioactive elements into the deep lunar mantle, which will further affect the thermal and chemical evolution of the lunar interior.</p></div>","PeriodicalId":7151,"journal":{"name":"Acta Geochimica","volume":"43 5","pages":"856 - 875"},"PeriodicalIF":1.4,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141654823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mineralogical and geochemical characterization of the Wadi Natash volcanic field (WNVF), Egypt: Alkaline magmatism in a Late Cretaceous continental rift system 埃及瓦迪纳塔什火山场(WNVF)的矿物学和地球化学特征:晚白垩世大陆裂谷系统中的碱性岩浆活动
IF 1.4 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-06-27 DOI: 10.1007/s11631-024-00702-5
Adel A. Surour, Ahmed A. Madani, Mohamed A. El-Sharkawi

The Wadi Natash volcanic field (WNVF) in the south of the Eastern Desert of Egypt is a typical example of well-preserved intraplate alkaline magmatism during the Late Cretaceous, i.e., prior to the Oligo-Miocene Red Sea rift. We compiled stratigraphic sections at two sectors; namely East Gabal Nuqra and West Khashm Natash (WKN) where the volcanic flows are intercalated with the Turonian Abu Agag sandstone with occasional paleosols when volcanic activity is intermittent. Peridotite mantle xenoliths are encountered in the first sector whereas flows in the second sector are interrupted by trachyte plugs and ring dykes. On a geochemical basis, the mafic melt originating from the lithospheric mantle beneath the WNVF practiced ~ 5% partial melting of phlogopite-bearing garnet peridotite. Basalts dominate in the two sectors and highly evolved (silicic) rocks are confined to the WKN sector. Rejuvenation of ancient Precambrian fractures following the NW–SE and ENE-WSW trends facilitated the ascend of Late Cretaceous mantle-derived alkaline magma. Structurally, the WNVF developed at the eastern shoulder of the so-called “Kom Ombo-Nuqra-Kharit rift system” that represents a well-defined NW-trending intracontinental rift basin in the southern Eastern Desert. In such a structural setup, the Natash volcanic are confined to half-grabens at the East Gabal Nuqra sector whereas the West Khashm Natash sector is subjected to extensional stresses that propagated eastwards. The WNVF is a typical example of fluvial clastics (Turonian) intercalation with rift-related alkaline volcanic rocks in northeast Africa.

埃及东部沙漠南部的瓦迪纳塔什火山区(WNVF)是晚白垩世(即中新世红海断裂之前)板块内碱性岩浆活动保存完好的典型例子。我们编制了两个地段的地层剖面图,即东加巴勒努克拉(East Gabal Nuqra)和西卡什姆纳塔什(West Khashm Natash,WKN),在这两个地段,火山流与都元古代阿布阿加格砂岩夹杂在一起,火山活动间歇时偶尔会出现古溶胶。在第一区段发现了橄榄岩地幔异长岩,而第二区段的火山流则被梯田岩塞和环堤打断。从地球化学的角度来看,源自WNVF下方岩石圈地幔的黑云母熔体部分熔化了约5%的含辉绿岩的石榴石橄榄岩。玄武岩在这两个地段占主导地位,而高度演化(硅质)岩石则仅限于西九龙北地段。前寒武纪古老断裂沿着西北-东南和东北-西南走向重新焕发活力,促进了晚白垩世地幔碱性岩浆的上升。从构造上看,WNVF 位于所谓的 "Kom Ombo-Nuqra-Kharit 裂谷系统 "的东肩,该裂谷系统代表了东部沙漠南部一个明确的西北走向大陆内裂谷盆地。在这种结构设置中,纳塔什火山仅限于东加巴尔努克拉地段的半堑壕,而西喀什姆纳塔什地段则受到向东传播的伸展应力作用。WNVF是非洲东北部河流碎屑岩(都龙纪)与裂谷相关碱性火山岩交错的典型例子。
{"title":"Mineralogical and geochemical characterization of the Wadi Natash volcanic field (WNVF), Egypt: Alkaline magmatism in a Late Cretaceous continental rift system","authors":"Adel A. Surour,&nbsp;Ahmed A. Madani,&nbsp;Mohamed A. El-Sharkawi","doi":"10.1007/s11631-024-00702-5","DOIUrl":"10.1007/s11631-024-00702-5","url":null,"abstract":"<div><p>The Wadi Natash volcanic field (WNVF) in the south of the Eastern Desert of Egypt is a typical example of well-preserved intraplate alkaline magmatism during the Late Cretaceous, i.e., prior to the Oligo-Miocene Red Sea rift. We compiled stratigraphic sections at two sectors; namely East Gabal Nuqra and West Khashm Natash (WKN) where the volcanic flows are intercalated with the Turonian Abu Agag sandstone with occasional paleosols when volcanic activity is intermittent. Peridotite mantle xenoliths are encountered in the first sector whereas flows in the second sector are interrupted by trachyte plugs and ring dykes. On a geochemical basis, the mafic melt originating from the lithospheric mantle beneath the WNVF practiced ~ 5% partial melting of phlogopite-bearing garnet peridotite. Basalts dominate in the two sectors and highly evolved (silicic) rocks are confined to the WKN sector. Rejuvenation of ancient Precambrian fractures following the NW–SE and ENE-WSW trends facilitated the ascend of Late Cretaceous mantle-derived alkaline magma. Structurally, the WNVF developed at the eastern shoulder of the so-called “Kom Ombo-Nuqra-Kharit rift system” that represents a well-defined NW-trending intracontinental rift basin in the southern Eastern Desert. In such a structural setup, the Natash volcanic are confined to half-grabens at the East Gabal Nuqra sector whereas the West Khashm Natash sector is subjected to extensional stresses that propagated eastwards. The WNVF is a typical example of fluvial clastics (Turonian) intercalation with rift-related alkaline volcanic rocks in northeast Africa.</p></div>","PeriodicalId":7151,"journal":{"name":"Acta Geochimica","volume":"43 6","pages":"1169 - 1191"},"PeriodicalIF":1.4,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142664451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling Nb–Ta mineralization processes: Insight from quartz textural and chemical characteristics in the Songshugang deposit, Jiangxi Province, South China 揭示铌钽矿化过程:从中国南方江西省松树岗矿床的石英纹理和化学特征中获得启示
IF 1.4 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-06-22 DOI: 10.1007/s11631-024-00705-2
Hengsong Zhang, Shaohao Zou, Xilian Chen, Deru Xu, Zhilin Wang, Yongwen Zhang, Hua Wang
<div><p>The Songshugang deposit is a large Ta–Nb deposit in South China, with Ta–Nb mineralization associated genetically with the granite and pegmatite. A diversity of quartz from topaz–albite granite, quartz–mica pegmatite, quartz–feldspar pegmatite, and quartz–fluorite pegmatite at Songshugang was studied by CL and LA–ICP–MS in order to constrain enrichment mechanisms of Nb and Ta and to find geochemical indicators of quartz for rare metal deposits. Cathodoluminescence image illuminates a canvas of complexity, the quartz from topaz–albite granite, quartz–mica pegmatite, quartz–feldspar pegmatite, and quartz–fluorite pegmatite, exhibits numerous dark CL streaks, patches, and a series of healed fractures. These textures suggest that the rocks were fractured because of deep crustal pressure, and underwent later hydrothermal metasomatism and quartz filling. The quartz from quartz–fluorite pegmatite present limited patches or fractures but distinct growth bands, indicating that the melt fluid composition during the formation of quartz at this stage varies greatly and is less affected by mechanical fragmentation. The LA–ICP–MS analysis of quartz shows that there is a positive correlation between Al and Li in the quartz from topaz–albite granite, quartz–mica pegmatite, quartz–feldspar pegmatite, to quartz–fluorite pegmatite, indicating that Al mainly enters the quartz lattice through charge compensation substitution mechanism with Li. However, our data deviate from the theoretical Li:Al mass ratio of ~ 1:3.89 in quartz, indicating that there may be competition between H<sup>+</sup> and Li in a water-rich magmatic environment. The quartz from topaz–albite granite is enriched in K and Na elements, and the quartz from quartz–fluorite pegmatite is enriched in fluorite with a low Ca content in quartz, further elucidating that these rocks were subjected to hydrothermal metasomatism. From topaz–albitite granite to quartz–fluorite pegmatite, Al, Li and Ge content and Al/Ti, Ge/Ti, Sb/Ti ratios in quartz gradually increased, but Ti content gradually decreased, reflecting the high evolution of magma, which can enrich rare metal elements. Based on the characteristics of quartz CL textures and trace elements in topaz–albite granite, quartz–mica pegmatite, quartz–feldspar pegmatite, and quartz–fluorite pegmatite, combined with the albitization and K-feldspathization of rocks, it is suggested that the Nb–Ta mineralization in Songshugang may be influenced by the combined action of magmatic crystallization differentiation and fluid metasomatism. By comparing the quartz in the Songshugang pluton with the quartz in the granite type and pegmatite type rare metal deposits recognized in the world, the Songshugang pegmatite share similarities with the LCT-type pegmatite. Combined with previous studies, the Ge/Ti > 0.1 and Ti < 10 ppm, as well as Al, Li, Ge, Sb, K, Na contents and Al/Ti, Sb/Ti ratios in quartz have the potential to be a powerful exploration marker fo
松树岗矿床是中国南方的一个大型钽-铌矿床,其钽-铌矿化与花岗岩和伟晶岩有遗传关联。我们通过 CL 和 LA-ICP-MS 对松树岗黄玉-橄榄石花岗岩、石英-云母伟晶岩、石英-长石伟晶岩和石英-萤石伟晶岩中的多种石英进行了研究,以确定铌和钽的富集机制,并为稀有金属矿床寻找石英的地球化学指标。阴极荧光图像照亮了一幅复杂的画卷,来自黄玉-绿帘石花岗岩、石英-云母伟晶岩、石英-长石伟晶岩和石英-萤石伟晶岩的石英呈现出大量深色 CL 条纹、斑块和一系列愈合裂隙。这些纹理表明,这些岩石是在地壳深部压力作用下断裂的,后来经历了热液变质作用和石英充填作用。石英-萤石伟晶岩中的石英呈现有限的斑块或断裂,但有明显的生长带,表明在这一阶段石英形成过程中熔融流体成分变化很大,受机械破碎的影响较小。石英的 LA-ICP-MS 分析表明,从黄玉-橄榄石花岗岩、石英-云母伟晶岩、石英-长石伟晶岩到石英-萤石伟晶岩,石英中的 Al 与 Li 呈正相关,表明 Al 主要是通过电荷补偿置换机制与 Li 一起进入石英晶格的。然而,我们的数据偏离了石英中 Li:Al 的理论质量比 ~ 1:3.89,表明在富水岩浆环境中 H+ 和 Li 之间可能存在竞争。黄玉-橄榄石花岗岩中的石英富含K和Na元素,石英-萤石伟晶岩中的石英富含萤石,而石英中的Ca含量较低,这进一步阐明了这些岩石经历了热液变质作用。从黄玉-阿尔卑斯花岗岩到石英-萤石伟晶岩,石英中Al、Li、Ge含量及Al/Ti、Ge/Ti、Sb/Ti比值逐渐增大,但Ti含量逐渐减小,反映了岩浆的高演化,可富集稀有金属元素。根据黄玉-黑云母花岗岩、石英-云母伟晶岩、石英-长石伟晶岩、石英-萤石伟晶岩中石英CL纹理和微量元素的特征,结合岩石的白化和K长石化,认为松树岗铌钽矿化可能受到岩浆结晶分异和流体变质作用的共同影响。通过将松树岗岩浆岩中的石英与世界公认的花岗岩型和伟晶岩型稀有金属矿床中的石英进行对比,发现松树岗伟晶岩与LCT型伟晶岩有相似之处。结合以往的研究,石英中的Ge/Ti > 0.1和Ti < 10 ppm以及Al、Li、Ge、Sb、K、Na含量和Al/Ti、Sb/Ti比值有可能成为在其他地方识别花岗岩型伟晶岩铌钽矿床的有力勘探标志。
{"title":"Unveiling Nb–Ta mineralization processes: Insight from quartz textural and chemical characteristics in the Songshugang deposit, Jiangxi Province, South China","authors":"Hengsong Zhang,&nbsp;Shaohao Zou,&nbsp;Xilian Chen,&nbsp;Deru Xu,&nbsp;Zhilin Wang,&nbsp;Yongwen Zhang,&nbsp;Hua Wang","doi":"10.1007/s11631-024-00705-2","DOIUrl":"10.1007/s11631-024-00705-2","url":null,"abstract":"&lt;div&gt;&lt;p&gt;The Songshugang deposit is a large Ta–Nb deposit in South China, with Ta–Nb mineralization associated genetically with the granite and pegmatite. A diversity of quartz from topaz–albite granite, quartz–mica pegmatite, quartz–feldspar pegmatite, and quartz–fluorite pegmatite at Songshugang was studied by CL and LA–ICP–MS in order to constrain enrichment mechanisms of Nb and Ta and to find geochemical indicators of quartz for rare metal deposits. Cathodoluminescence image illuminates a canvas of complexity, the quartz from topaz–albite granite, quartz–mica pegmatite, quartz–feldspar pegmatite, and quartz–fluorite pegmatite, exhibits numerous dark CL streaks, patches, and a series of healed fractures. These textures suggest that the rocks were fractured because of deep crustal pressure, and underwent later hydrothermal metasomatism and quartz filling. The quartz from quartz–fluorite pegmatite present limited patches or fractures but distinct growth bands, indicating that the melt fluid composition during the formation of quartz at this stage varies greatly and is less affected by mechanical fragmentation. The LA–ICP–MS analysis of quartz shows that there is a positive correlation between Al and Li in the quartz from topaz–albite granite, quartz–mica pegmatite, quartz–feldspar pegmatite, to quartz–fluorite pegmatite, indicating that Al mainly enters the quartz lattice through charge compensation substitution mechanism with Li. However, our data deviate from the theoretical Li:Al mass ratio of ~ 1:3.89 in quartz, indicating that there may be competition between H&lt;sup&gt;+&lt;/sup&gt; and Li in a water-rich magmatic environment. The quartz from topaz–albite granite is enriched in K and Na elements, and the quartz from quartz–fluorite pegmatite is enriched in fluorite with a low Ca content in quartz, further elucidating that these rocks were subjected to hydrothermal metasomatism. From topaz–albitite granite to quartz–fluorite pegmatite, Al, Li and Ge content and Al/Ti, Ge/Ti, Sb/Ti ratios in quartz gradually increased, but Ti content gradually decreased, reflecting the high evolution of magma, which can enrich rare metal elements. Based on the characteristics of quartz CL textures and trace elements in topaz–albite granite, quartz–mica pegmatite, quartz–feldspar pegmatite, and quartz–fluorite pegmatite, combined with the albitization and K-feldspathization of rocks, it is suggested that the Nb–Ta mineralization in Songshugang may be influenced by the combined action of magmatic crystallization differentiation and fluid metasomatism. By comparing the quartz in the Songshugang pluton with the quartz in the granite type and pegmatite type rare metal deposits recognized in the world, the Songshugang pegmatite share similarities with the LCT-type pegmatite. Combined with previous studies, the Ge/Ti &gt; 0.1 and Ti &lt; 10 ppm, as well as Al, Li, Ge, Sb, K, Na contents and Al/Ti, Sb/Ti ratios in quartz have the potential to be a powerful exploration marker fo","PeriodicalId":7151,"journal":{"name":"Acta Geochimica","volume":"43 4","pages":"737 - 753"},"PeriodicalIF":1.4,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142413058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rebuilding the theory of isotope fractionation for evaporation of silicate melts under vacuum condition 重建真空条件下硅酸盐熔体蒸发的同位素分馏理论
IF 1.4 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-06-14 DOI: 10.1007/s11631-024-00709-y
Jie Wang, Yun Liu

Isotope effects are pivotal in understanding silicate melt evaporation and planetary accretion processes. Based on the Hertz–Knudsen equation, the current theory often fails to predict observed isotope fractionations of laboratory experiments due to its oversimplified assumptions. Here, we point out that the Hertz-Knudsen-equation-based theory is incomplete for silicate melt evaporation cases and can only be used for situations where the vaporized species is identical to the one in the melt. We propose a new model designed for silicate melt evaporation under vacuum. Our model considers multiple steps including mass transfer, chemical reaction, and nucleation. Our derivations reveal a kinetic isotopic fractionation factor (KIFF or α) αour model = [m(1species)/m(2species)]0.5, where m(species) is the mass of the reactant of reaction/nucleation-limiting step or species of diffusion-limiting step and superscript 1 and 2 represent light and heavy isotopes, respectively. This model can effectively reproduce most reported KIFFs of laboratory experiments for various elements, i.e., Mg, Si, K, Rb, Fe, Ca, and Ti. And, the KIFF-mixing model referring that an overall rate of evaporation can be determined by two steps jointly can account for the effects of low PH2 pressure, composition, and temperature. In addition, we find that chemical reactions, diffusion, and nucleation can control the overall rate of evaporation of silicate melts by using the fitting slope in ln(− lnf) versus ln(t). Notably, our model allows for the theoretical calculations of parameters like activation energy (Ea), providing a novel approach to studying compositional and environmental effects on evaporation processes, and shedding light on the formation and evolution of the proto-solar and Earth-Moon systems.

同位素效应是理解硅酸盐熔体蒸发和行星吸积过程的关键。目前的理论以赫兹-克努森方程为基础,但由于其假设过于简化,往往无法预测实验室实验中观测到的同位素分馏。在此,我们指出,基于赫兹-克努森方程的理论在硅酸盐熔体蒸发的情况下是不完整的,只能用于蒸发的物种与熔体中的物种相同的情况。我们提出了一个专为真空条件下硅酸盐熔体蒸发设计的新模型。我们的模型考虑了多个步骤,包括传质、化学反应和成核。我们的推导揭示了动力学同位素分馏因子(KIFF 或 α)αour 模型 = [m(1 物种)/m(2 物种)]0.5,其中 m(species) 是反应/成核限制步骤的反应物或扩散限制步骤的物种的质量,上标 1 和 2 分别代表轻同位素和重同位素。该模型可以有效地再现实验室实验中报告的各种元素(即 Mg、Si、K、Rb、Fe、Ca 和 Ti)的大多数 KIFF。而且,KIFF-混合模型指出,总体蒸发率可由两个步骤共同决定,可解释低 PH2 压力、成分和温度的影响。此外,通过利用 ln(- lnf)与 ln(t)的拟合斜率,我们发现化学反应、扩散和成核可以控制硅酸盐熔体的总体蒸发率。值得注意的是,我们的模型可以对活化能(Ea)等参数进行理论计算,为研究成分和环境对蒸发过程的影响提供了一种新方法,并为原太阳系和地月系的形成和演化提供了启示。
{"title":"Rebuilding the theory of isotope fractionation for evaporation of silicate melts under vacuum condition","authors":"Jie Wang,&nbsp;Yun Liu","doi":"10.1007/s11631-024-00709-y","DOIUrl":"10.1007/s11631-024-00709-y","url":null,"abstract":"<div><p>Isotope effects are pivotal in understanding silicate melt evaporation and planetary accretion processes. Based on the Hertz–Knudsen equation, the current theory often fails to predict observed isotope fractionations of laboratory experiments due to its oversimplified assumptions. Here, we point out that the Hertz-Knudsen-equation-based theory is incomplete for silicate melt evaporation cases and can only be used for situations where the vaporized species is identical to the one in the melt. We propose a new model designed for silicate melt evaporation under vacuum. Our model considers multiple steps including mass transfer, chemical reaction, and nucleation. Our derivations reveal a kinetic isotopic fractionation factor (KIFF or <i>α</i>) <i>α</i><sub>our model</sub> = [<i>m</i>(<sup>1</sup>species)/<i>m</i>(<sup>2</sup>species)]<sup>0.5</sup>, where <i>m</i>(species) is the mass of the reactant of reaction/nucleation-limiting step or species of diffusion-limiting step and superscript 1 and 2 represent light and heavy isotopes, respectively. This model can effectively reproduce most reported KIFFs of laboratory experiments for various elements, i.e., Mg, Si, K, Rb, Fe, Ca, and Ti. And, the KIFF-mixing model referring that an overall rate of evaporation can be determined by two steps jointly can account for the effects of low <i>P</i><sub>H2</sub> pressure, composition, and temperature. In addition, we find that chemical reactions, diffusion, and nucleation can control the overall rate of evaporation of silicate melts by using the fitting slope in ln(− ln<i>f</i>) versus ln(<i>t</i>). Notably, our model allows for the theoretical calculations of parameters like activation energy (<i>E</i><sub>a</sub>), providing a novel approach to studying compositional and environmental effects on evaporation processes, and shedding light on the formation and evolution of the proto-solar and Earth-Moon systems.</p></div>","PeriodicalId":7151,"journal":{"name":"Acta Geochimica","volume":"43 4","pages":"661 - 676"},"PeriodicalIF":1.4,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141344907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Theoretical study of kinetic isotope effects for vacancy diffusion of impurity in solids 固体中杂质空位扩散的动力学同位素效应理论研究
IF 1.4 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-06-13 DOI: 10.1007/s11631-024-00706-1
Yuxi Jing, Xuefang Li, Yun Liu

Theoretical studies of the diffusional isotope effect in solids are still stuck in the 1960s and 1970s. With the development of high spatial resolution mass spectrometers, isotopic data of mineral grains are rapidly accumulated. To dig up information from these data, molecular-level theoretical models are urgently needed. Based on the microscopic definition of the diffusion coefficient (D), a new theoretical framework for calculating the diffusional isotope effect (DIE(v)) (in terms of D*/D) for vacancy-mediated impurity diffusion in solids is provided based on statistical mechanics formalism. The newly derived equation shows that the DIE(v) can be easily calculated as long as the vibration frequencies of isotope-substituted solids are obtained. The calculated DIE(v) values of 199Au/195Au and 60Co/57Co during diffusion in Cu and Au metals are all within 1% of errors compared to the experimental data, which shows that this theoretical model is reasonable and precise.

对固体中扩散同位素效应的理论研究仍停留在二十世纪六七十年代。随着高空间分辨率质谱仪的发展,矿物颗粒的同位素数据迅速积累。要从这些数据中挖掘信息,迫切需要分子水平的理论模型。基于扩散系数(D)的微观定义,研究人员在统计力学形式主义的基础上,为计算固体中空位介导的杂质扩散的扩散同位素效应(DIE(v))(以 D*/D 表示)提供了一个新的理论框架。新推导出的方程表明,只要获得同位素取代固体的振动频率,就能轻松计算出 DIE(v)。计算出的 199Au/195Au 和 60Co/57Co 在铜和金金属中扩散时的 DIE(v) 值与实验数据相比误差均在 1%以内,这表明该理论模型是合理而精确的。
{"title":"Theoretical study of kinetic isotope effects for vacancy diffusion of impurity in solids","authors":"Yuxi Jing,&nbsp;Xuefang Li,&nbsp;Yun Liu","doi":"10.1007/s11631-024-00706-1","DOIUrl":"10.1007/s11631-024-00706-1","url":null,"abstract":"<div><p>Theoretical studies of the diffusional isotope effect in solids are still stuck in the 1960s and 1970s. With the development of high spatial resolution mass spectrometers, isotopic data of mineral grains are rapidly accumulated. To dig up information from these data, molecular-level theoretical models are urgently needed. Based on the microscopic definition of the diffusion coefficient (<i>D</i>), a new theoretical framework for calculating the diffusional isotope effect (DIE<sub>(v)</sub>) (in terms of <i>D</i><sup><i>*</i></sup><i>/D</i>) for vacancy-mediated impurity diffusion in solids is provided based on statistical mechanics formalism. The newly derived equation shows that the DIE<sub>(v)</sub> can be easily calculated as long as the vibration frequencies of isotope-substituted solids are obtained. The calculated DIE<sub>(v)</sub> values of <sup>199</sup>Au/<sup>195</sup>Au and <sup>60</sup>Co/<sup>57</sup>Co during diffusion in Cu and Au metals are all within 1% of errors compared to the experimental data, which shows that this theoretical model is reasonable and precise.</p></div>","PeriodicalId":7151,"journal":{"name":"Acta Geochimica","volume":"43 5","pages":"959 - 970"},"PeriodicalIF":1.4,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141347607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Acta Geochimica
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1